Skip to main content
Log in

Perovskite nanoparticles as a sensing platform for electrochemical glucose detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth PrFeO3 perovskite nanoparticles (NPs) were prepared by the ultrasonically assisted co-precipitation method. Highly crystalline structure, smooth surface, and irregular spherical shape with an average size of 30–35 nm were observed in TEM micrographs. The cyclic voltammetry (CV) technique was applied for the electrochemical detection of glucose concentrations in liquid samples, in which crystalline perovskite NPs utilized as a sensing platform. From electrochemistry, various electro-catalytic features of the as-designed electrode were investigated namely variable potential, scan speeds, the same potential for nine consecutive cycles, chronoameromatric (CA) analysis, interference sample analysis, and quantitative glucose detection in phosphate buffer solution (0.1 M PBS, pH 7.199). The fabricated electrode provided a wide glucose detection range (19.5–5000 µM), fast response, long linearity, and high sensitivity with a low detection limit (19.5 µM) because of efficient redox-coupled reaction. The sensitivity of the fabricated electrode was examined with time-dependent impact via chronoamperometry in the existence of glucose at four different voltages of + 0.05 to + 1.2 V from 0 to 1000s, showing outstanding results. Additionally, the sustainability of the fabricated electrode was examined by taking tap water samples from five distinct locations and underwent an actual sample analysis using perovskite/GCE. Monitoring the glucose level in the human body is an important task to control health-related complications like blood sugar, kidney disease, heart failure, etc. Therefore, glucose detection/sensing techniques are important to regulate the sugar levels in the human blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. J.A. Onrubia-Calvo, B. Pereda-Ayo, U. De-La-Torre, J.R. Gonzalez-Velasco, Catal. Today 333, 208 (2019). Doi:https://doi.org/10.1016/j.cattod.2018.12.031

    Article  CAS  Google Scholar 

  2. A.A. Ansari, M. Alam, Biosensors (2022). https://doi.org/10.3390/bios12020092

    Article  Google Scholar 

  3. X.T. Wang, Y. Li, X.Q. Zhang, J.F. Li, X. Li, C.W. Wang, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144363

    Article  Google Scholar 

  4. A. Fazli, F. Zakeri, A. Khataee, Y. Orooji, Commun. Chem. 5, 95 (2022). https://doi.org/10.1038/s42004-022-00707-2

    Article  CAS  Google Scholar 

  5. M. Ismael, M. Wark, Catalysts (2019). https://doi.org/10.3390/catal9040342

    Article  Google Scholar 

  6. J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nat. Mater. 13, 726 (2014). https://doi.org/10.1038/nmat4000

    Article  CAS  Google Scholar 

  7. A.A. Ansari, N. Ahmad, M. Alam et al., Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-44118-1

    Article  Google Scholar 

  8. A.A. Ansari, N. Ahmad, M. Alam et al., J. Electron. Mater. 48, 4351 (2019). https://doi.org/10.1007/s11664-019-07216-4

    Article  CAS  Google Scholar 

  9. A.A. Ansari, S.F. Adil, M. Alam et al., Sci. Rep. 10, 15012 (2020). https://doi.org/10.1038/s41598-020-71869-z

    Article  CAS  Google Scholar 

  10. H. Yi, J. Xu, X. Tang et al., Ultrason. Sonochem. 48, 418 (2018). https://doi.org/10.1016/j.ultsonch.2018.06.009

    Article  CAS  Google Scholar 

  11. J.A. Onrubia, B. Pereda-Ayo, U. De-La-Torre, J.R. Gonzalez-Velasco, Appl. Catal. B-Environ. 213, 198 (2017). https://doi.org/10.1016/j.apcatb.2017.04.068

    Article  CAS  Google Scholar 

  12. A.A. Ansari, B.D. Malhotra, Coordin. Chem. Rev. 452, 214282 (2022). https://doi.org/10.1016/j.ccr.2021.214282

    Article  CAS  Google Scholar 

  13. P. Ciambelli, S. Cimino, S. De Rossi et al., Appl. Catal. B-Environ. 29, 239 (2001). https://doi.org/10.1016/S0926-3373(00)00215-0

    Article  CAS  Google Scholar 

  14. S. Ajmal, I. Bibi, F. Majid et al., J. Mater. Res. Technol. 8, 4831 (2019). https://doi.org/10.1016/j.jmrt.2019.08.029

    Article  CAS  Google Scholar 

  15. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, Phase Transit. 89, 261 (2016). https://doi.org/10.1080/01411594.2015.1116532

    Article  CAS  Google Scholar 

  16. R. Keyikoglu, A. Khataee, H. Lin, Y. Orooji, Chem. Eng. J. 434, 134730 (2022). https://doi.org/10.1016/j.cej.2022.134730

    Article  CAS  Google Scholar 

  17. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, J. Chin. Chem. Soc-Taip. 62, 925 (2015). https://doi.org/10.1002/jccs.201500195

    Article  CAS  Google Scholar 

  18. A.A. Ansari, M. Alam, M.A. Ali, Colloids Surf. A: Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2020.126116

    Article  Google Scholar 

  19. M. Khorasani-Motlagh, M. Noroozifar, S. Jahani, Synth. React. Inorg. M 45, 1591 (2015). Doi:https://doi.org/10.1080/15533174.2015.1031010

    Article  CAS  Google Scholar 

  20. H.Q. Yu, X.J. Lan, Y.N. Tang, H.D. Wang, J. Mater. Sci-Mater. El. 29, 1651 (2018). https://doi.org/10.1007/s10854-017-8077-x

    Article  CAS  Google Scholar 

  21. D. Balram, K.-Y. Lian, Ultrason. Sonochem. 60, 104798 (2020). https://doi.org/10.1016/j.ultsonch.2019.104798

    Article  CAS  Google Scholar 

  22. Z.C. YY Fan, J. Hu, C. Yang, L. Zhang, Zhu, Appl. Surf. Sci. 266, 22 (2013). https://doi.org/10.1016/j.apsusc.2012.11.050

    Article  CAS  Google Scholar 

  23. S.H. Tang, J.N. Wang, C.X. Yang, L.X. Dong, D.L. Kong, XP Yan, Nanoscale 6, 8037 (2014). Doi:https://doi.org/10.1039/c4nr00806e

    Article  CAS  Google Scholar 

  24. F. Namvar, S.K. Abass, F. Soofivand, M. Salavati-Niasari, H. Moayedi, Ultrason. Sonochem. 58, 104687 (2019). https://doi.org/10.1016/j.ultsonch.2019.104687

    Article  CAS  Google Scholar 

  25. R. Monsef, M. Ghiyasiyan-Arani, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 61, 104822 (2020). https://doi.org/10.1016/j.ultsonch.2019.104822

    Article  CAS  Google Scholar 

  26. M.A. Gabal, F. Al-Solami, Y.M. Al Angari et al., Ceram. Int. 45, 16530 (2019). https://doi.org/10.1016/j.ceramint.2019.05.187

    Article  CAS  Google Scholar 

  27. S. Utara, S. Hunpratub, Ultrason. Sonochem. 41, 441 (2018). https://doi.org/10.1016/j.ultsonch.2017.10.008

    Article  CAS  Google Scholar 

  28. A.A. Ansari, S.F. Adil, M. Alam et al., Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-71869-z

    Article  Google Scholar 

  29. A.A. Ansari, J.P. Labis, M. Alam, S.M. Ramay, N. Ahmad, Acta Metall. Sinica-Eng. Lett. 29, 265 (2016). https://doi.org/10.1007/s40195-016-0387-0

    Article  CAS  Google Scholar 

  30. A.A. Ansari, M. Alam, M.A. Ali, Colloid Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2020.126116

    Article  Google Scholar 

  31. Y. Zhang, X. Yang, Y. Pu et al., J. Fluoresc. 29, 541 (2019). https://doi.org/10.1007/s10895-019-02365-5

    Article  CAS  Google Scholar 

  32. A.A. Ansari, M. Alam, J. Mater. Sci-Mater. El. 32, 13897 (2021). https://doi.org/10.1007/s10854-021-05965-9

    Article  CAS  Google Scholar 

  33. A.A. Ansari, P.R. Solanki, B.D. Malhotra, Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2953686

    Article  Google Scholar 

  34. A.A. Ansari, G. Sumana, M.K. Pandey, B.D. Malhotra, J. Mater. Res. 24, 1667 (2009). https://doi.org/10.1557/Jmr.2009.0212

    Article  CAS  Google Scholar 

  35. A.A. Ansari, A. Kaushik, P.R. Solanki, BD Malhotra, Electroanalysis 21, 965 (2009). Doi:https://doi.org/10.1002/elan.200804499

    Article  CAS  Google Scholar 

  36. A.A. Ansari, A. Kaushik, P.R. Solanki, Electrochem. Commun. 10, 1246 (2008). https://doi.org/10.1016/j.elecom.2008.06.003

    Article  CAS  Google Scholar 

  37. A.A. Ansari, P.R. Solanki, Sens. Lett. 7, 64 (2009). https://doi.org/10.1166/sl.2009.1011

    Article  CAS  Google Scholar 

  38. A.A. Ansari, R. Singh, G. Sumana, B.D. Malhotra, Analyst 134, 997 (2009). Doi:https://doi.org/10.1039/b817562d

    Article  CAS  Google Scholar 

  39. A.A. Ansari, A. Kaushik, P.R. Solanki, B.D. Malhotra, Bioelectrochemistry 77, 75 (2010). Doi:https://doi.org/10.1016/j.bioelechem.2009.06.014

    Article  CAS  Google Scholar 

  40. A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications (John Wiley & Sons, 2022)

    Google Scholar 

  41. F.G. Cottrell, Z. Phys. Chem. (1903). https://doi.org/10.1515/zpch-1903-4229

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number IFKSURG-554.

Funding

This work is supported by Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number IFKSURG-554  

Author information

Authors and Affiliations

Authors

Contributions

AAA contributed to conceptualization, methodology, investigation, resources, writing—original draft, writing—review & editing, supervision, project administration, and funding acquisition. MAMK contributed to formal analysis and data curation. MA contributed to produce data, formal analysis, and data curation.

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Competing interest

The authors don’t have any competing or financial interest in the present manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Khan, M.A.M. & Alam, M. Perovskite nanoparticles as a sensing platform for electrochemical glucose detection. J Mater Sci: Mater Electron 34, 991 (2023). https://doi.org/10.1007/s10854-023-10454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10454-2

Navigation