Skip to main content
Log in

Influences of rotating magnetic field on microstructure and properties of Sn–Ag–Cu–Sb–Ce solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of the rotating magnetic field (RMF) on the microstructure and properties of Sn-1.0Ag-0.5Cu-0.5Sb-0.07Ce alloy was investigated. The phase composition of the solder was analyzed by X-ray diffraction (XRD), and the grain size, shape, and phase distribution of the solder were determined by optical microscope (OM), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). Then, the differential scanning calorimeter (DSC) was employed to evaluate the thermal characteristics of the solder. Finally, the universal mechanical testing machine was used to measure the mechanical properties of the solder at different strain rates. The results showed that the size of β-Sn was refined and the distribution was more uniform, intermetallic compounds (IMCs) developed from long-strip-like or block shape to finely granular, and the layer spacing decreased after the application of a rotating magnetic field. The pasty range and the melting point of solder decreased slightly (from 5 to 4.7 °C) with the RMF. Meanwhile, RMF processing led to an increase (about 13.4%) in the elongation (El.%) of alloy, and the mechanical properties of the solder were enhanced. The research serves as a helpful reference for the development of low-content lead-free solder, which provides a potential solution to the reliability problem of the lead-free joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors affirm that the information/data of this research article is available inside the article.

References

  1. I.C. Nnorom, O. Osibanjo, Resour. Conserv. Recycl. 52, 843–858 (2008)

    Article  Google Scholar 

  2. M. Turner, D. Callaghan, Comput. Law Secur. Rev. 23, 73–76 (2007)

    Article  Google Scholar 

  3. J. Wang, J. Chen, Z. Zhang, P. Zhang, Z. Yu, S. Zhang, Solder. Surf. Mt. Technol. 34, 124–133 (2022)

    Article  Google Scholar 

  4. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306–1322 (2012)

    Article  CAS  Google Scholar 

  5. K. Zeng, K.N. Tu, Mater. Sci. Eng. R Rep. 38, 55–105 (2002)

    Article  Google Scholar 

  6. R.J. Coyle, K. Sweatman, B. Arfaei, JOM 67, 2394–2415 (2015)

    Article  CAS  Google Scholar 

  7. A.M. El-Taher, S.E. Abd El Azeem, A.A. Ibrahiem, J. Mater. Sci. Mater. Electron. 32, 6199–6213 (2021)

    Article  CAS  Google Scholar 

  8. M. Reid, J. Punch, M. Collins, C. Ryan, Solder. Surf. Mt. Technol. 20, 3–8 (2008)

    Article  CAS  Google Scholar 

  9. J. Wang, L. Ma, Y. Wang, F. Guo, J. Mater. Sci. 57, 1623–1632 (2022)

    Article  CAS  Google Scholar 

  10. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci. Mater. Electron. 27, 489–502 (2016)

    Article  CAS  Google Scholar 

  11. Y. Leong, A.S.M.A. Haseeb, Materials 9, 522–538 (2016)

    Article  Google Scholar 

  12. Q.B. Tao, L. Benabou, V.N. Le, N.A.T. Nguyen, H. Nguyen-Xuan, Fatigue Fract. Eng. Mater. Struct. 43, 2883–2885 (2020)

    Article  CAS  Google Scholar 

  13. A.E. Hammad, A.M. El-Taher, J. Electron. Mater. 43, 4146–4157 (2014)

    Article  CAS  Google Scholar 

  14. M. Xin, X. Wang, F. Sun, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09210-9

    Article  Google Scholar 

  15. S. Chantaramanee, P. Sungkhaphaitoon, J. Mater. Sci. Mater. Electron. 32, 27607–27624 (2021)

    Article  CAS  Google Scholar 

  16. G.Y. Li, B.L. Chen, X.Q. Shi, S.C.K. Wong, Z.F. Wang, Thin Solid Films 504, 421–425 (2006)

    Article  CAS  Google Scholar 

  17. A.E. Hammad, Microelectron. Reliab. 87, 133–141 (2018)

    Article  CAS  Google Scholar 

  18. X. Tu, D. Yi, J. Wu, B. Wang, J. Alloys Compd. 698, 317–328 (2017)

    Article  CAS  Google Scholar 

  19. W. Zhu, F. Xu, X. Zhang, J. Qin, H. Lu, C. Wang, L. Tang, J. Chin. Rare ESOC. 40(02), 261–267 (2021)

    Google Scholar 

  20. A.A. El-Daly, A.A. Ibrahiem, J. Alloys Compd. 730, 47–56 (2018)

    Article  CAS  Google Scholar 

  21. A.E. Hammad, M. Ragab, J. Mater. Sci. Mater. Electron. 30, 18838–18847 (2019)

    Article  CAS  Google Scholar 

  22. Z. Wang, J. Zhou, F. Liu, Y. Wu, N. Yan, Solder. Surf. Mt. Technol. (2022). https://doi.org/10.1108/SSMT-06-2022-0044

    Article  Google Scholar 

  23. A.E. Hammad, M. Ragab, Microelectron. Reliab. 113, 113932–113940 (2020)

    Article  CAS  Google Scholar 

  24. D.A.-A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Microelectron. Reliab. 52, 2701–2708 (2012)

    Article  CAS  Google Scholar 

  25. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268–275 (2015)

    Article  CAS  Google Scholar 

  26. C. Pan, J. Zhang, K. Kou, Y. Zhang, G. Wu, Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  27. A.A. Ibrahiem, A.A. El-Daly, Microelectron. Reliab. 98, 10–18 (2019)

    Article  CAS  Google Scholar 

  28. I. Abdullah, M.N. Zulkifli, A. Jalar, R. Ismail, M.A. Ambak, J. Electron. Mater. 48, 2826–2839 (2019)

    Article  CAS  Google Scholar 

  29. A.A. El-Daly, A.M. El-Taher, Mater. Des. 51, 789–796 (2013)

    Article  CAS  Google Scholar 

  30. A.A. El-Daly, A.M. El-Taher, Mater. Des. 47, 607–614 (2013)

    Article  CAS  Google Scholar 

  31. T.G. Langdon, Mater. Sci. Eng. A 283, 266–273 (2000)

    Article  Google Scholar 

  32. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 366, 50–55 (2004)

    Article  Google Scholar 

  33. Q.S. Zhu, Z.G. Wang, S.D. Wu, J.K. Shang, Mater. Sci. Eng. A 502, 153–158 (2009)

    Article  Google Scholar 

  34. G. Sharma, R.V. Ramanujan, T.R.G. Kutty, G.P. Tiwari, Mater. Sci. Eng. A 278, 106–112 (2000)

    Article  Google Scholar 

  35. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, N. Jahangiri, Mater. Des. 30, 574–580 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Nos. 51775388 and 11872048) and the Outstanding Young and Middle-aged Scientific Innovation Team of Colleges and Universities of Hubei Province (No. T2022015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZW contributed to experiments, data curation and writing—original draft. JZ contributed to writing—review & editing. JL, ZW and NY contributed to investigation and collection of literature. Fang Liu contributed to writing—review & editing, resources, and project administration.

Corresponding authors

Correspondence to Fang Liu or Jiacheng Zhou.

Ethics declarations

Conflict interest

The authors declare no conflict of interest among them.

Ethical approval

The article does not involve any study performed on animals or human by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, F., Liu, J. et al. Influences of rotating magnetic field on microstructure and properties of Sn–Ag–Cu–Sb–Ce solder alloy. J Mater Sci: Mater Electron 34, 504 (2023). https://doi.org/10.1007/s10854-023-09961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09961-z

Navigation