Skip to main content
Log in

Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.A. Su, L.B. Tan, T.Y. Tee, and V.B.C. Tan, Microelectron. Reliab. 50, 564 (2010).

    Article  Google Scholar 

  2. S.H. Wang, T.S. Chin, C.F. Yang, S.W. Chen, and C.T. Chuang, J. Alloys Compd. 497, 428 (2010).

    Article  Google Scholar 

  3. H. Jiang, K. Moon, and C.P. Wong, Microelectron. Reliab. 53, 1968 (2013).

    Article  Google Scholar 

  4. H. Ye, S. Xue, J. Luo, and Y. Li, Mater. Des. 46, 816 (2013).

    Article  Google Scholar 

  5. K.C. Otiaba, R.S. Bhatti, N.N. Ekere, S. Mallik, and M. Ekpu, Eng. Fail. Anal. 28, 192 (2013).

    Article  Google Scholar 

  6. V.L. Niranjani, B.S.S. Chandra Rao, Vajinder Singh, and S.V. Kamat, Mater. Sci. Eng. A 529, 257 (2011).

    Article  Google Scholar 

  7. S. Chantaramanee, S. Wisutmethangoon, L. Sikong, and T. Plookphol, J. Mater. Sci.: Mater. Electron. 24, 3707 (2013).

    Google Scholar 

  8. D. Li, C. Liu, and P.P. Conway, Mater. Sci. Eng. A 391, 95 (2005).

    Article  Google Scholar 

  9. Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428 (2010).

    Article  Google Scholar 

  10. H. Ma and T.K. Lee, IEEE Trans. Compon. Packag. 3, 71 (2013).

    Google Scholar 

  11. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, and F.X. Che, J. Electron. Mater. 42, 470 (2013).

    Article  Google Scholar 

  12. David B. Witkin, Mater. Sci. Eng. A 532, 212 (2012).

    Article  Google Scholar 

  13. R. Pandher and R. Healey, Proceedings of the 58th Electronic Components and Technology Conference, IEEE (Lake Buena Vista, FL, 2008), p. 2018.

  14. U.S. Mohanty and K.L. Lin, J. Electron. Mater. 42, 628 (2013).

    Article  Google Scholar 

  15. W. Dong, Y. Shi, Y. Lei, Z. Xia, and F. Guo, J. Mater. Sci.: Mater. Electron. 20, 1008 (2009).

    Google Scholar 

  16. F. Cheng, H. Nishikawa, and T. Takemoto, J. Mater. Sci. 43, 3643 (2008).

    Article  Google Scholar 

  17. A.A. El-Daly, A.E. Hammad, A. Fawzy, and D.A. Nasrallh, Mater. Des. 43, 40 (2013).

    Article  Google Scholar 

  18. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, and C.M. Kumar, et al., Mater. Sci. Eng. A 460–461, 595 (2007).

    Article  Google Scholar 

  19. F.X. Che, W.H. Zhu, S.W. Poh Edith, X.W. Zhang, and X.R. Zhang, J. Alloys Compd. 507, 215 (2010).

    Article  Google Scholar 

  20. T. Ventura, S. Terzi, M. Rappaz, and A.K. Dahle, Acta Mater. 59, 1651 (2011).

    Article  Google Scholar 

  21. D.-S. Jiang, Y.-P. Wang, and C.S. Hsiao, Proceedings of the 8th Electronics Packaging Technology Conference, IEEE (Singapore, 2007), p. 385.

  22. A.A. El-Daly and A.E. Hammad, J. Alloys Compd. 509, 8554 (2011).

    Article  Google Scholar 

  23. G. Montesperelli, M. Rapone, F. Nanni, P. Travaglia, P. Riani, and R. Marazza, et al., Mater. Corros. 59, 662 (2008).

    Article  Google Scholar 

  24. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, and M. Lu, Mater. Sci. Eng. A 527, 1343 (2010).

    Article  Google Scholar 

  25. G.Y. Li, B.L. Chen, X.Q. Shi, S.C.K. Wong, and Z.F. Wang, Thin Solid Films 504, 421 (2006).

    Article  Google Scholar 

  26. A.A. El-Daly, A. Fawzy, A.Z. Mohamad, and A.M. El-Taher, J. Alloys Compd. 509, 4574 (2011).

    Article  Google Scholar 

  27. J. Zhang, B. Chen, and B. Zhang, Mater. Des. 34, 15 (2012).

    Article  Google Scholar 

  28. V. Senthilkumar, A. Balaji, and R. Narayanasamy, Mater. Des. 37, 102 (2012).

    Article  Google Scholar 

  29. M.L. Huang, C.M.L. Wu, and L. Wang, J. Electron. Mater. 34, 1373 (2005).

    Article  Google Scholar 

  30. S. Alibabaie and R. Mahmudi, Mater. Des. 39, 397 (2012).

    Article  Google Scholar 

  31. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).

    Article  Google Scholar 

  32. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, and N. Jahangiri, Mater. Des. 30, 574 (2009).

    Article  Google Scholar 

  33. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, Mater. Sci. Eng. A 366, 50 (2004).

    Article  Google Scholar 

  34. N. Hidaka, H. Watanabe, and M. Yoshiba, J. Electron. Mater. 38, 670 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Hammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, A., El-Taher, A. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni. J. Electron. Mater. 43, 4146–4157 (2014). https://doi.org/10.1007/s11664-014-3323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3323-y

Keywords

Navigation