Skip to main content

Advertisement

Log in

Synergistic photophysical and electrochemical response of Te @ PANI for energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Materials with synergistic functionality are of great importance in consumer electronics. We report on the preparation and assessments of Te @ PANI composite for energy conversion and storage application. Initially, (5–15%) Te @ PANI composites were synthesized by the facile, room temperature, time and cost-effective solid-state synthesis technique followed by characterizations using Fourier transform infra-red, UV-Visible, energy dispersive spectroscopic including X-ray diffractometry and field electron scanning microscopy. Te exfoliates polymeric segments of PANI by bonding benzenoid rings through sulphonated impurity sites which have a profound impact on symmetry molecular bond vibrations. Its analysis is presented. In photophysical application, both dark and luminescent I-V measurements have been performed that showed a linear variation with minimum photo-resistance offered by 10% composite and reaching current > 10 mA under 1.5 V biased conditions. In storage response, Te @ PANI supercapacitor devices are dominating in inductive coupling over capacitive coupling by ten times. Corresponding shunt impedance is seen to be favourably lower for 10% composition, and respective charge transfer impedance has also followed identical behaviour over other classes of samples. The quality factor of the device for 10% is found to be almost twelve times better. However, at a low scan rate (10 mV/s), the presence of Te has changed the tendency of ion migration, thereby, reducing the magnitude of ion current by about three times with an increase in Te from 5 to 15%. Thus, fabricated composite demonstrated synergistic aspects of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. D. Pakulski, V. Montes-García, A. Gorczyński, W. Czepa, T. Chudziak, P. Samorì, A. Ciesielski, J. Mater. Chem. A. 10, 16685 (2022)

    Article  CAS  Google Scholar 

  2. M. Zhou, J. Wang, G. Wang, Y. Zhao, J. Tang, J. Pan, G. Ji, Compos. B Eng. 242, 110110 (2022)

    Article  CAS  Google Scholar 

  3. U. Shankar, R.K. Singh, S.B. Das, V. Kumar, N. Kumar, R. Kumar, P. Sharma, J. Supercond. Novel Magn. 35, 1937 (2022)

    Article  CAS  Google Scholar 

  4. K. Zeranska, K. Filak, K. Wilczyński, A. Siemion, N. Palka, K. Godziszewski, Y. Yashchyshyn, M. Zdrojek, ACS Appl. Electron. Mater. 4, 4463 (2022)

    Article  CAS  Google Scholar 

  5. D. Ugale, R.V. Jagtap, D. Pawar, S. Datar, S.N. Kale, P.S. Alegaonkar, RSC Adv. 6, 97266 (2016)

    Article  CAS  Google Scholar 

  6. S. Yu, M. Xi, X. Jin, K. Han, Z. Wang, H. Zhu, Catal. Commun. 11, 1125 (2010)

    Article  CAS  Google Scholar 

  7. F. Diaz, J.A. Logan, J. Electroanal. Chem. Interfacial Electrochem. 111, 111 (1980)

    Article  CAS  Google Scholar 

  8. N. Jarad, K. Ibrahim, N.M. Ahmed, AIP Conf. Proc. 1733(1), 020020 (2016)

    Article  Google Scholar 

  9. L. Zhang, P. Wan, T. Xu, C. Kan, M. Jiang, Opt. Express 29, 19202 (2021)

    Article  CAS  Google Scholar 

  10. T.G. Abdel-Malik, H.A. Motaweh, M.O. Abdel-Hamed, J. Photon. Energy. 1, 011116 (2011)

    Article  Google Scholar 

  11. H. Qasim, A. Z. Sadek, R. Arsat, W. Wlodarski, I. Belski, R. B. Kaner, K. Kalantar-zadeh, in Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, Vol. 6800 (International Society for Optics and Photonics, 2008, January), p. 680012.

  12. D. Patidar, N. Jain, N.S. Saxena, K. Sharma, T.P. Sharma, Braz. J. Phys. 36, 1210 (2006)

    Article  CAS  Google Scholar 

  13. F.A. Rafiqi, K. Majid, RSC Adv. 6, 22016 (2016)

    Article  CAS  Google Scholar 

  14. Y. Luo, W. Hong, Z. Xiao, H. Bai, Phys. Chem. Chem. Phys. 20, 131 (2018)

    Article  CAS  Google Scholar 

  15. H. Wang, J. Lin, Z.X. Shen, J. Sci.: Adv. Mater. Devices 1, 225 (2016)

    Google Scholar 

  16. S.B. Kulkarni, U.M. Patil, I. Shackery, J.S. Sohn, S. Lee, B. Park, S. Jun, J. Mater. Chem. A. 2, 4989 (2014)

    Article  CAS  Google Scholar 

  17. S.K. Simotwo, C. DelRe, V. Kalra, ACS Appl. Mater. Interfaces. 8, 21261 (2016)

    Article  CAS  Google Scholar 

  18. S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang, L. Cheng, Y. Zhou, H. Yue, H. Wang, L. Guo, Adv. Mater. 32, 1908027 (2020)

    Article  CAS  Google Scholar 

  19. Z. Chen, Y. Zhao, F. Mo, Z. Huang, X. Li, D. Wang, C. Zhi, Small Struct. 1, 2000005 (2020)

    Article  Google Scholar 

  20. Q. Liu, W. Deng, C.F. Sun, Energy Storage Mater. 28, 10 (2020)

    Article  CAS  Google Scholar 

  21. U.K. Gautam, C.N.R. Rao, J. Mater. Chem. 14, 2530 (2004)

    Article  CAS  Google Scholar 

  22. D. Pokhrel, E. Bastola, A.B. Phillips, M.J. Heben, R.J. Ellingson, Mater. Adv. 1, 2721 (2020)

    Article  CAS  Google Scholar 

  23. P. Rani, A.P. Alegaonkar, S.K. Mahapatra, P.S. Alegaonkar, Appl. Phys. A 128, 1 (2022)

    Article  Google Scholar 

  24. R. Dogra, M. Khandelwal, A. Kumar, P. Khanra, P. Kumar, AIP Conf. Proc. 2220(1), 140020 (2020)

    Article  CAS  Google Scholar 

  25. N.J. Al-Daghman, Int. J. Res. Appl. Sci. Eng. Technol. 6, 1555 (2018)

    Article  Google Scholar 

  26. N.M. Soudagar, V.K. Pandit, R.B. Pujari, K.B. Chorghade, C.D. Lokhande, S.S. Joshi, J. Eng. Res. Technol. 1, 587–594 (2017)

    Google Scholar 

  27. B. Kavitha, K. Prabakar, K. Siva, D. Srinivasu, C. Srinivas, V.K. Aswal, V. Siriguri, N. Narsimlu, IOSR J. Appl. Chem. 2, 16 (2012)

    Article  CAS  Google Scholar 

  28. S. Senthilkumar, A. Rajendran, MOJ Poly. Sci. 1, 31 (2017)

    Google Scholar 

  29. M.K. Trivedi, R.M. Tallapragada, A. Branton, D. Trivedi, G. Nayak, O. Latiyal, S. Jana, J. Electr. Electron. Syst. (2015). https://doi.org/10.4172/2332-0796.1000162

    Article  Google Scholar 

  30. P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.N. Pusawale, J.J. Shim, C.D. Lokhande, RSC Adv. 5, 68939 (2015)

    Article  CAS  Google Scholar 

  31. P.R. Deshmukh, R.N. Bulakhe, S.N. Pusawale, S.D. Sartale, C.D. Lokhande, RSC Adv. 5, 28687 (2015)

    Article  CAS  Google Scholar 

  32. H. Taymaz, R. Taş, H. Kamış, M. Ca, Polym. Bull. 78, 2849 (2021)

    Article  Google Scholar 

  33. P.Y. Wong, S.W. Phang, A. Baharum, RSC Adv. 10, 39693 (2020)

    Article  CAS  Google Scholar 

  34. Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, X. Wei, J. Mater. Chem. 20, 2457 (2010)

    Article  CAS  Google Scholar 

  35. N. Jassim, F.M. Al-Kazazz, A.K. Ali, Int J Chem Sci. 11, 1299 (2013)

    CAS  Google Scholar 

  36. R.P. Ramasamy, SN Appl. Sci. 2, 1 (2020)

    Article  Google Scholar 

  37. Y. Wang, Polym. Int. 67, 650 (2018)

    Article  CAS  Google Scholar 

  38. K.C. Sajjan, M. Fiasal, B.S. Khened, S. Khasim, Int. J. Electr. Electron. Eng. (IJEEE). 2, 67 (2013)

    Google Scholar 

  39. M. Faisal, S. Khasim, Bull. Korean Chem. Soc. 34, 99 (2013)

    Article  CAS  Google Scholar 

  40. D. Zheng, H. Fang, M. Long, F. Wu, P. Wang, F. Gong, X. Wu, J.C. Ho, L. Liao, W. Hu, ACS Nano 12, 7239 (2018)

    Article  CAS  Google Scholar 

  41. F. Li, R. Tao, B. Cao, L. Yang, Z. Wang, Adv. Funct. Mater. 31, 2104367 (2021)

    Article  CAS  Google Scholar 

  42. Y. Pan, Y. Zhao, S. Mu, Y. Wang, C. Jiang, Q. Liu, Q. Fang, M. Xue, S. Qiu, J. Mater. Chem. A. 5, 9544 (2017)

    Article  CAS  Google Scholar 

  43. T. Qin, Z. Wang, Y. Wang, F. Besenbacher, M. Otyepka, M. Dong, Nano-Micro Lett. 13, 1 (2021)

    Article  CAS  Google Scholar 

  44. P. Alegaonkar, M.A. Mahadadalkar, P.S. Alegaonkar, B.B. Kale, S.K. Pardeshi, Electrochim. Acta 291, 225 (2018)

    Article  CAS  Google Scholar 

  45. S. Mentus, G. Ćirić-Marjanović, M. Trchova, J. Stejskal, Nanotechnology 20, 245601 (2009)

    Article  Google Scholar 

  46. M. Rahman, T. Mahtab, M. Mukhlish, M.O. Faruk, M.M. Rahman, Polym. Bull. 78, 5379 (2021)

    Article  CAS  Google Scholar 

  47. H. Zeng, J.P. Leburton, Y. Xu, J. Wei, Nanoscale Res. Lett. 6, 1 (2011)

    Article  Google Scholar 

  48. V.R. Mehto, J. Mehto, I. Chauhan, R. Singh, J. Pandey, Nanomed. Res. 5, 00104 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors PR and PSA are thankful to Nilesh G. Saykar for his help in recording I-V data and to Sathish Natarajan (Scientist, CSIR-AMPRI, Bhopal) for performing the RAMAN measurement. Author PR also thanks to the University grant commission, India, for awarding the SRF fellowship.

Funding

This study was supported by the University Grants Commission, 1282/(CSIR-UGC NET DEC. 2018) to Pinki Rani.

Author information

Authors and Affiliations

Authors

Contributions

PR: prepared samples, characterized, implemented for application, optimised and demonstrating the application, wrote draft manuscript. YJ: assisted experimental work, implemented experimental work, collected data. KKH and RB made facility electrochemical available. PSA: generated idea, provided theme, made overall coordination, prepared final manuscript draft.

Corresponding author

Correspondence to Prashant S. Alegaonkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1355 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Jewariya, Y., Haldar, K.K. et al. Synergistic photophysical and electrochemical response of Te @ PANI for energy harvesting. J Mater Sci: Mater Electron 34, 8 (2023). https://doi.org/10.1007/s10854-022-09414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09414-z

Navigation