Skip to main content

Advertisement

Log in

Microstructures and properties of CrxFeNi(3-x)Al high-entropy alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A set of novel Co-free high-entropy alloys CrxFeNi(3-x)Al (x = 0.25, 0.5, 0.75, 1, 1.25, 1.5) were fabricated by non-self-consumable vacuum melting method, and their solidification microstructures as well as compression properties were investigated. The research results firstly demonstrate that the solidification microstructures of Cr-0.25, Cr-0.5 and Cr-0.75 are composed of primary B2 phase and (FCC + B2) eutectic structure; Secondly, there are primary B2 phase and (FCC + B2) eutectic structure in the solidification microstructure of Cr-1, with a tiny amount of BCC phase distributing on the matrix of primary phase B2; In addition, as a “sunflower-like" structure of BCC phase and B2 phase, the solidification microstructure of Cr-1.25 is identified. Also, the core of the sunflower is B2 phase, and the petals are alternately arranged by BCC phase and B2 phase; Last but not least, it is a fine BCC phase and B2 dual-phase structure that form the solidification microstructure of Cr-1.5. Among the phases mentioned above, the FCC phase is abundant in Ni and Fe elements, the B2 phase is abundant in Ni and Al elements, and the BCC phase is abundant in Cr element. With the ascending trend of Cr content, the strength of CrxFeNi(3-x)Al high-entropy alloy descends initially and then climbs, during which the primary reasons for the rise of strength are solid solution strengthening, fine crystal strengthening and precipitation of BCC phase. The compressive strengths of Cr-1.25 and Cr-1.5 alloys are 2111.5 and 1985.3 MPa, respectively, and the compressibility can attain to 41.36 and 49.87%, respectively, manifesting comprehensive mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299 (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  2. B. Cantor, I. Chang, P. Knight et al., Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng.: A 375, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  3. Z.A. Yong, A. Ttz, T.B. Zhi et al., Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  4. A.D.B.M. Bons, A critical review of high entropy alloys and related concepts. Acta Materialia 122, 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  5. Z.P. Liu et al., An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66, 67 (2015). https://doi.org/10.1016/j.intermet.2015.06.021

    Article  Google Scholar 

  6. J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 65, 1759 (2013). https://doi.org/10.1007/s11837-013-0761-6

    Article  Google Scholar 

  7. M.H. Chuang, M.H. Tsai, W.R. Wang et al., Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia 59(16), 6308 (2011). https://doi.org/10.1016/j.actamat.2011.06.041

    Article  ADS  Google Scholar 

  8. Y. Zou, H. Ma, R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015). https://doi.org/10.1038/ncomms8748

    Article  ADS  Google Scholar 

  9. Y.D. Wu, Y.H. Cai, T. Wang et al., A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014). https://doi.org/10.1016/j.matlet.2014.05.134

    Article  Google Scholar 

  10. Y. Deng, C. Tasan, K. Pradeep et al., Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015). https://doi.org/10.1016/j.actamat.2015.04.014

    Article  ADS  Google Scholar 

  11. D. Li, C. Li, T. Feng et al., High-entropy Al03CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia 123, 285 (2017). https://doi.org/10.1016/j.actamat.2016.10.038

    Article  ADS  Google Scholar 

  12. B. Gludovatz, A. Hohenwarter, D. Catoor et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153 (2014). https://doi.org/10.1126/science.1254581

    Article  ADS  Google Scholar 

  13. Z. Tang, T. Yuan, C. Tsai et al., Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015). https://doi.org/10.1016/j.actamat.2015.07.004

    Article  ADS  Google Scholar 

  14. M.A. Hemphill, T. Yuan, G.Y. Wang et al., Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Materialia 60(16), 5723 (2012). https://doi.org/10.1016/j.actamat.2012.06.046

    Article  ADS  Google Scholar 

  15. Y. Lu, Y. Dong, S. Guo et al., A promising new class of high-temperature alloys: eutectic high-entropy alloys. Rep 4, 6200 (2014). https://doi.org/10.1038/srep06200

    Article  Google Scholar 

  16. I.S. Wani, T. Bhattacharjee, S. Sheikh et al., Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 675, 99 (2016). https://doi.org/10.1016/j.msea.2016.08.048

    Article  Google Scholar 

  17. A. Ib, A. Mw, B. Zw, Eutectic/eutectoid multi-principle component alloys: a review. Mater. Charact. 147, 545 (2019). https://doi.org/10.1016/j.matchar.2018.07.030

    Article  Google Scholar 

  18. X. Ye et al., A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure. Scripta Materialia. 199, 74128 (2021). https://doi.org/10.1016/j.scriptamat.2021.113886.

    Article  Google Scholar 

  19. J. Xi, Z. Yang, Z. Lu et al., A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties-ScienceDirect. Mater. Lett. 216, 144 (2018). https://doi.org/10.1016/j.matlet.2018.01.017

    Article  Google Scholar 

  20. S. Vrtnik, S. Guo, S. Sheikh et al., Magnetism of CoCrFeNiZrx eutectic high-entropy alloys. Intermetallics 93, 122 (2018). https://doi.org/10.1016/j.intermet.2017.11.017

    Article  Google Scholar 

  21. Q. Wu, Z. Wang, T. Zheng et al., A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett. 253, 268 (2019). https://doi.org/10.1016/j.matlet.2019.06.067

    Article  Google Scholar 

  22. Y. Dong, Z. Yao, X. Huang et al., Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. J. Alloys Compounds 823, 153886 (2020). https://doi.org/10.1016/j.jallcom.2020.153886

    Article  Google Scholar 

  23. X. Jin, Y. Zhou, L. Zhang et al., A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Des. 143, 49 (2018). https://doi.org/10.1016/j.matdes.2018.01.057

    Article  Google Scholar 

  24. A. Shafiei, S. Rajabi, A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni. Appl. Phys. A 125, 11 (2019). https://doi.org/10.1007/s00339-019-3084-9

    Article  Google Scholar 

  25. J. Xi, J. Bi, Z. Lu et al., A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloy. Compd. 770, 655 (2019). https://doi.org/10.1016/j.jallcom.2018.08.176

    Article  Google Scholar 

  26. G. Sheng, C. Ng, L. Jian et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 213 (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  27. X. Yong Dong, YLu. Gao et al., A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater. Lett. 169, 62 (2016). https://doi.org/10.1016/j.matlet.2016.01.096

    Article  Google Scholar 

  28. C. Zhang, Z. Fan, S. Chen et al., Computational thermodynamics aided high-entropy alloy design,. JOM: J. Minerals Metals Mater. Soc. 64(7), 839 (2012). https://doi.org/10.1007/s11837-012-0365-6

    Article  Google Scholar 

  29. A. Subramaniam Anil et al., On the formation of disordered solid solutions in multi-component alloys. J. Alloys Compounds: Interdiscipl. J. Mater. Sci. Solid-state Chem. Phys. 587, 113 (2014). https://doi.org/10.1016/j.jallcom.2013.10.133

    Article  Google Scholar 

  30. Q.W. Tian, G.J. Zhang et al., Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Mater. Charact. 151, 302 (2019)

    Article  Google Scholar 

  31. D.B. Miracle, Overview No. 104 the physical and mechanical properties of NiAl. Acta Metallurgica Et Materialia 41(3), 649 (1993). https://doi.org/10.1016/0956-7151(93)90001-9

    Article  Google Scholar 

  32. W.H. Liu, J.Y. He, H.L. Huang et al., Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015). https://doi.org/10.1016/j.intermet.2015.01.004

    Article  Google Scholar 

  33. M. Yue, B. Jiang, C. Li et al., The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals-Open Access Metall. J. 7(2), 57 (2017). https://doi.org/10.3390/met7020057

    Article  Google Scholar 

  34. B.S. Li, Y.P. Wang, M.X. Ren et al., Effects of Mn Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater Sci Eng A 498(1–2), 482 (2008). https://doi.org/10.1016/j.msea.2008.08.025

    Article  Google Scholar 

  35. Z. Xuerou, L. Yukun, S. Tuo, Advances in the study of phase formation theory of high entropy alloys. Mater. Guide 33(7), 1174 (2019)

    Google Scholar 

  36. Y, Zhang, et al., Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534 (2008). https://doi.org/10.1002/adem.200700240

    Article  Google Scholar 

  37. P. Jinsheng, Q. Jianmin, T. Minbo, Fundamentals of materials science (Tsinghua University Press, Beijing, 2006)

    Google Scholar 

  38. Y.P. Lu, H. Jiang, S. Guo et al., A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017). https://doi.org/10.1016/j.intermet.2017.09.001

    Article  Google Scholar 

  39. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys-ScienceDirect. Mater. Chem. Phys. 132(2), 233 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  40. Dong Yong. Fundamental study on microstructure and mechanical properties in multi-phase Al-Cr-Fe-Ni-M high entropy alloys, (2016).

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Nos. 51604161), Yichang Key Laboratory of Graphite Additive Manufacturing Program (Nos. YKLGAM202001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xicong Ye or Dong Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Ye, X., Xu, D. et al. Microstructures and properties of CrxFeNi(3-x)Al high-entropy alloys. Appl. Phys. A 128, 1 (2022). https://doi.org/10.1007/s00339-021-05118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05118-z

Keywords

Navigation