Skip to main content

Advertisement

Log in

Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The discovery of innovative multifunctional ceramics is an important topic in the recent field of research and development. Perovskite oxide ceramics exhibit a wide range of multifunctional characteristics, such as ferromagnetism, ferro-, piezo-, and pyro-electricity and nonlinear dielectric properties. These characteristics are significant for use in environmental remediation, sensors, filters, energy conversion, and storage, corrosion-resistance coatings, aerospace industries, separators, detectors, antennas, etc. The calcium copper titanate (CCTO) with colossal dielectric constant with low dielectric loss tangent, and its isomorphs have piqued the interest of the development of advanced capacitor materials for electronic industries. CaCu3Ti4O12 (CCTO) exhibits the most extraordinary characteristic, with a dielectric permittivity at 1 kHz of ~ 104 that is essentially constant from ambient temperature to 300 °C. The substitution of metal cations/anions is an effective strategy to enhance the properties of the CCTO ceramics and extend their applications. In this review, we systematically examined the advancements of CCTO ceramics, including their structural morphology, tolerance factor, extrinsic/intrinsic mechanisms, different synthesis techniques, sintering techniques, and the effect of single doping as well as the co-doping mechanism for the enhancement of the dielectric and electrical properties. A series of CCTO-based ceramics have been summarized and explained their mechanisms and electrical properties. We anticipate that our study will help as an overview and motivate other researchers to continue working on the fabrication of CCTO or other electro-ceramics in the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2019, Elsevier

Fig. 5
Fig. 6

Copyright 2018, Elsevier

Fig. 7

Copyright 2017, Elsevier

Fig. 8

Copyright 2015, Elsevier

Fig. 9

Copyright 2018, Elsevier

Similar content being viewed by others

Data availability

Data sharing is not applicable to this review article as no datasets were generated or analyzed during the current study.

References

  1. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5530), 673–676 (2001)

    Article  CAS  Google Scholar 

  2. P.P. Murmu, A. Shettigar, S.V. Chong, Z. Liu, D. Goodacre, V. Jovic, T. Mori, K.E. Smith, J. Kennedy, Role of phase separation in nanocomposite indium-tin-oxide films for transparent thermoelectric applications. J. Materiomics 7(3), 612–620 (2021)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  4. M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)

    Article  CAS  Google Scholar 

  5. P. Couture, G.V.M. Williams, J. Kennedy, J. Leveneur, P.P. Murmu, S.V. Chong, S. Rubanov, Nanocrystalline multiferroic BiFeO3 thin films made by room temperature sputtering and thermal annealing, and formation of an iron oxide-induced exchange bias. J. Alloy. Compd. 695, 3061–3068 (2017)

    Article  CAS  Google Scholar 

  6. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Article  CAS  Google Scholar 

  7. M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75, 1187–1197 (2017)

    Article  Google Scholar 

  8. S. Panimalar, S. Logambal, R. Thambidurai, C. Inmozhi, R. Uthrakumar, A. Muthukumaran, R.A. Rasheed, M.K. Gatasheh, A. Raja, J. Kennedy, K. Kaviyarasu, Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. Environ. Res. 205, 112560 (2022)

    Article  CAS  Google Scholar 

  9. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)

    Article  CAS  Google Scholar 

  10. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F. Azrin Shah, Z. Radzi, N.A. Abu Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16(7), 1135 (2016)

    Article  CAS  Google Scholar 

  11. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides. Scripta Mater. 142, 116–120 (2018)

    Article  CAS  Google Scholar 

  12. N. Ramadass, ABO3-type oxides—their structure and properties—a bird’s eye view. Mater. Sci. Eng. 36(2), 231–239 (1978)

    Article  CAS  Google Scholar 

  13. E. Grabowska, Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Appl. Catal. B 186, 97–126 (2016)

    Article  CAS  Google Scholar 

  14. O.A. Carrasco-Jaim, J.M. Mora-Hernandez, L.M. Torres-Martínez, E. Moctezuma, A comparative study on the photocatalytic hydrogen production of ATiO3 (A= Zn, Cd and Pb) perovskites and their photoelectrochemical properties. J. Photochem. Photobiol. A 371, 98–108 (2019)

    Article  CAS  Google Scholar 

  15. H.S. Bhatti, S.T. Hussain, F.A. Khan, S. Hussain, Synthesis and induced multiferroicity of perovskite PbTiO3; a review. Appl. Surf. Sci. 367, 291–306 (2016)

    Article  CAS  Google Scholar 

  16. S. Tasleem, M. Tahir, Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: A review. Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.05.090

    Article  Google Scholar 

  17. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103(2), 024105 (2008)

    Article  CAS  Google Scholar 

  18. S.M. Lam, J.C. Sin, A.R. Mohamed, A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater. Res. Bull. 90, 15–30 (2017)

    Article  CAS  Google Scholar 

  19. D.K. Singh, J. Manam, Efficient dual emission mode of green emitting perovskite BaTiO3: Er3+ phosphors for display and temperature sensing applications. Ceram. Int. 44(9), 10912–10920 (2018)

    Article  CAS  Google Scholar 

  20. M. Rizwan, Z. Usman, M. Shakil, S.S.A. Gillani, S. Azeem, H.B. Jin, C.B. Cao, R.F. Mehmood, G. Nabi, M.A. Asghar, Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Mater. Res. Express 7(1), 015920 (2020)

    Article  CAS  Google Scholar 

  21. L.H. Oliveira, J. Savioli, A.P. de Moura, I.C. Nogueira, M.S. Li, E. Longo, J.A. Varela, I.L. Rosa, Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions. J. Alloy. Compd. 647, 265–275 (2015)

    Article  CAS  Google Scholar 

  22. A.S. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4(1), 3–26 (2000)

    Article  CAS  Google Scholar 

  23. P.K. Panda, Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44(19), 5049–5062 (2009)

    Article  CAS  Google Scholar 

  24. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials 13(24), 5742 (2020)

    Article  CAS  Google Scholar 

  25. W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019)

    Article  CAS  Google Scholar 

  26. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7(7), 4548–4556 (2016)

    Article  CAS  Google Scholar 

  27. Y. Zhou, J. Chen, O.M. Bakr, H.T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30(19), 6589–6613 (2018)

    Article  CAS  Google Scholar 

  28. Z. Peng, J. Wang, X. Lei, J. Zhu, S. Xu, P. Liang, L. Wei, D. Wu, J. Wang, X. Chao, Z. Yang, Colossal dielectric response in CdAlxCu3-xTi4O12 perovskite ceramics. Mater. Chem. Phys. 258, 123940 (2021)

    Article  CAS  Google Scholar 

  29. J. Zhao, J. Gao, W. Li, Y. Qian, X. Shen, X. Wang, X. Shen, Z. Hu, C. Dong, Q. Huang, L. Cao, A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite. Nat. Commun. 12(1), 1–9 (2021)

    CAS  Google Scholar 

  30. Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. npj Comput. Mater. 7(1), 1–18 (2021)

    Article  Google Scholar 

  31. Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem. Soc. Rev. 49(4), 1109–1143 (2020)

    Article  CAS  Google Scholar 

  32. Zhou, F., Zhao, Y., Shen, X., Chai, Y. and Ma, Q., 2016, May. Multifunctional perovskite photovoltachromic supercapacitor. In: 2016 IEEE International Nanoelectronics Conference (INEC) (pp. 1–2). IEEE.

  33. X. Zhang, F. Li, R. Zheng, Growth and optimization of hybrid perovskite single crystals for optoelectronics/electronics and sensing. J. Mater. Chem. C 8(40), 13918–13952 (2020)

    Article  CAS  Google Scholar 

  34. L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 9(1), 1–4 (2018)

    Article  CAS  Google Scholar 

  35. Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chem. Eng. J. 397, 125516 (2020)

    Article  CAS  Google Scholar 

  36. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural and electrical characteristics of rare-earth modified bismuth layer structured compounds. J. Alloy. Compd. 863, 158457 (2021)

    Article  CAS  Google Scholar 

  37. S. Kawrani, M. Boulos, D. Cornu, M. Bechelany, From synthesis to applications: copper calcium titanate (CCTO) and its magnetic and photocatalytic properties. ChemistryOpen 8(7), 922 (2019)

    Article  CAS  Google Scholar 

  38. L. Kong, I. Karatchevtseva, Y. Zhang, A new method for production of glass-Ln2Ti2O7 pyrochlore (Ln= Gd, Tb, Er, Yb). J. Eur. Ceram. Soc. 37(15), 4963–4972 (2017)

    Article  CAS  Google Scholar 

  39. S. Jindal, A. Vasishth, S. Devi, G. Anand, A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr. Ferroelectr. 186(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  40. R. Ding, M.C. Wong, J. Hao, Recent advances in hybrid perovskite nanogenerators. EcoMat 2(4), e12057 (2020)

    Article  CAS  Google Scholar 

  41. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8(12), 8009–8031 (2015)

    Article  Google Scholar 

  42. R. Yuan, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, Ferroelectric, elastic, piezoelectric, and dielectric properties Ba (Ti0.7Zr0.3) O3-x (Ba0.82Ca0.18) TiO3 of Pb-free ceramics. J. Appl. Phys. 122(4), 044105 (2017)

    Article  CAS  Google Scholar 

  43. W. Gao, Y. Zhu, Y. Wang, G. Yuan, J.M. Liu, A review of flexible perovskite oxide ferroelectric films and their application. J. Materiomics 6(1), 1–16 (2020)

    Article  Google Scholar 

  44. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, Energy-storage properties of 0.89 Bi0.5Na0.5TiO3–0.06 BaTiO3–0.05 K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94(12), 4382–4386 (2011)

    Article  CAS  Google Scholar 

  45. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-micro Lett. 8(4), 291–311 (2016)

    Article  CAS  Google Scholar 

  46. M.H. Park, H.J. Kim, G. Lee, J. Park, Y.H. Lee, Y.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, H.W. Park, H.J. Chang, A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 6(4), 041403 (2019)

    Article  CAS  Google Scholar 

  47. H. Ghayour, M. Abdellahi, A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol. 292, 84–93 (2016)

    Article  CAS  Google Scholar 

  48. U.S. Rai, L. Singh, K.D. Mandal, N.B. Singh, An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles. Nanosci Technol 1(2), 1–17 (2014)

    Google Scholar 

  49. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012)

    Article  CAS  Google Scholar 

  50. M. Chunhong, H. Zhang, L. Yingli, S. Yuanqiang, L. Peng, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28(1), 43–47 (2010)

    Article  CAS  Google Scholar 

  51. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60(2), 15–62 (2014)

    Article  CAS  Google Scholar 

  52. Y. Shimakawa, A-site-ordered perovskites with intriguing physical properties. Inorg. Chem. 47(19), 8562–8570 (2008)

    Article  CAS  Google Scholar 

  53. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper-titanate. Solid State Commun. 115(5), 217–220 (2000)

    Article  CAS  Google Scholar 

  54. L. Singh, U.S. Rai, K.D. Mandal, Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach. Mater. Res. Bull. 48(6), 2117–2122 (2013)

    Article  CAS  Google Scholar 

  55. M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, High intrinsic permittivity in Na1/2Bi1/2Cu3Ti4O12. Appl. Phys. Lett. 89(21), 212904 (2006)

    Article  CAS  Google Scholar 

  56. B. Bochu, M.N. Deschizeaux, J.C. Joubert, A. Collomb, J. Chenavas, M. Marezio, Synthèse et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12. J. Solid State Chem. 29(2), 291–298 (1979)

    Article  CAS  Google Scholar 

  57. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73(9), 094124 (2006)

    Article  CAS  Google Scholar 

  58. T.B. Adams, D.C. Sinclair, A.R. West, Decomposition reactions in CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 89(9), 2833–2838 (2006)

    CAS  Google Scholar 

  59. R. Ma, Y. Li, Y. Huang, S. Dong, Q. Yang, Y. Jin, Z. Zhang, M. Yan, K. Chen, J. Liu, J. Zhu, Quantitative estimation of inter-dipole interaction energy in giant-permittivity CaCu3Ti4O12 solid bulks. AIP Adv. 9(11), 115108 (2019)

    Article  CAS  Google Scholar 

  60. J. Zhang, Y. Li, Q. Yang, Y. Yang, F. Meng, T. Wang, Z. Xia, Y. Wang, K. Chen, Q. Zhang, L. Gu, A structural perspective on giant permittivity CaCu3Ti4O12: one way to quantum dielectric physics in solids. Open Ceram. 6, 100126 (2021)

    Article  Google Scholar 

  61. P. Thiruramanathan, A. Marikani, S. Ravi, D. Madhavan, G.S. Hikku, Fabrication of miniaturized high bandwidth dielectric resonator on patch (DRoP) antenna using high dielectric CaCu3Ti4O12 nanoparticles. J. Alloy. Compd. 747, 1033–1042 (2018)

    Article  CAS  Google Scholar 

  62. C.R. Foschini, B. Hangai, C.S. Cavalcante, A.Z. Simões, M. Cilense, E. Longo, Non-ohmic properties of CaCu3Ti4O12 thin films deposited By RF-sputtering. J. Mater. Sci. 28(20), 15685–15693 (2017)

    CAS  Google Scholar 

  63. Y.Q. Tan, J.L. Zhang, W.T. Hao, G. Chen, W.B. Su, C.L. Wang, Giant dielectric-permittivity property and relevant mechanism of Bi2/3Cu3Ti4O12 ceramics. Mater. Chem. Phys. 124(2–3), 1100–1104 (2010)

    Article  CAS  Google Scholar 

  64. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, Effect of Cu-stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics. Solid State Commun. 142(5), 281–286 (2007)

    Article  CAS  Google Scholar 

  65. D.M. Supriya, M.R. Rajani, A.R. Phani, C.S. Naveen, R. Ravishankar, Synthesis of CCTO and doped CCTO nanopowders and its applications in the field of electronics. Mater. Today 4(11), 12021–12025 (2017)

    Google Scholar 

  66. S.Y. Chung, I.D. Kim, S.J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3(11), 774–778 (2004)

    Article  CAS  Google Scholar 

  67. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 70(17), 172102 (2004)

    Article  CAS  Google Scholar 

  68. C.C. Wang, L.W. Zhang, Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett. 88(4), 042906 (2006)

    Article  CAS  Google Scholar 

  69. H. Lin, W. Xu, H. Zhang, C. Chen, Y. Zhou, Z. Yi, Origin of high dielectric performance in fine grain-sized CaCu3Ti4O12 materials. J. Eur. Ceram. Soc. 40(5), 1957–1966 (2020)

    Article  CAS  Google Scholar 

  70. S. Behara, T. Poonawala, T. Thomas, Crystal structure classification in ABO3 perovskites via machine learning. Comput. Mater. Sci. 188, 110191 (2021)

    Article  CAS  Google Scholar 

  71. T.T. Fang, C.P. Liu, Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17(20), 5167–5171 (2005)

    Article  CAS  Google Scholar 

  72. V.M. Goldschmidt, The laws of crystal chemistry. Nat. Sci. 14(21), 477–485 (1926)

    Article  CAS  Google Scholar 

  73. C. Li, K.C.K. Soh, P. Wu, Formability of ABO3 perovskites. J. Alloy. Compd. 372(1–2), 40–48 (2004)

    Article  CAS  Google Scholar 

  74. M.H. Whangbo, E.E. Gordon, J.L. Bettis Jr., A. Bussmann-Holder, J. Köhler, Tolerance factor and cation–anion orbital interactions differentiating the polar and antiferrodistortive structures of perovskite oxides ABO3. Z. Anorg. Allg. Chem. 641(6), 1043–1052 (2015)

    Article  CAS  Google Scholar 

  75. G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015)

    Article  CAS  Google Scholar 

  76. W. Li, E. Ionescu, R. Riedel, A. Gurlo, Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. A 1(39), 12239–12245 (2013)

    Article  CAS  Google Scholar 

  77. N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, F. Li, Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A-and B-site cations. Int. J. Hydrog. Energy 35(14), 7295–7301 (2010)

    Article  CAS  Google Scholar 

  78. L. Xu, S. Yuan, H. Zeng, J.J.M.T.N. Song, A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano 6, 100036 (2019)

    Article  Google Scholar 

  79. T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.I. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6(1), 1–10 (2016)

    Article  CAS  Google Scholar 

  80. G. Cotrim, J.A. Cortés, H. Moreno, S.M. Freitas, M.V.S. Rezende, L.R.O. Hein, M.A. Ramírez, Tunable capacitor-varistor response of CaCu3Ti4O12/CaTiO3 ceramic composites with SnO2 addition. Mater. Charact. 170, 110699 (2020)

    Article  CAS  Google Scholar 

  81. J. Yu, R. Ran, Y. Zhong, W. Zhou, M. Ni, Z. Shao, Advances in porous perovskites: synthesis and electrocatalytic performance in fuel cells and metal–air batteries. Energy Environ. Mater. 3(2), 121–145 (2020)

    Article  CAS  Google Scholar 

  82. F. Amaral, M. Valente, L.C. Costa, Synthesis and characterization of calcium copper titanate obtained by ethylenediaminetetraacetic acid gel combustion. Mater. Chem. Phys. 124(1), 580–586 (2010)

    Article  CAS  Google Scholar 

  83. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Alloy. Compd. 778, 625–632 (2019)

    Article  CAS  Google Scholar 

  84. K. Prompa, E. Swatsitang, T. Putjuso, Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol–gel process. J. Mater. Sci. 28(20), 15033–15042 (2017)

    CAS  Google Scholar 

  85. M. Wang, B. Zhang, F. Zhou, Oleic acid assisted synthesis of CaCu3Ti4O12 powders and ceramics by sol–gel process. J. Mater. Sci. 25(9), 3947–3952 (2014)

    CAS  Google Scholar 

  86. S. Kaur, A. Kumar, A.L. Sharma, D.P. Singh, Dielectric and energy storage behavior of CaCu3Ti4O12 nanoparticles for capacitor application. Ceram. Int. 45(6), 7743–7747 (2019)

    Article  CAS  Google Scholar 

  87. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, Very low loss tangent and high dielectric permittivity in pure-CaCu3Ti4O12 ceramics prepared by a modified sol-gel process. J. Am. Ceram. Soc. 95(5), 1497–1500 (2012)

    Article  CAS  Google Scholar 

  88. L. Marchin, S. Guillemet-Fritsch, B. Durand, A.A. Levchenko, A. Navrotsky, T. Lebey, Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 91(2), 485–489 (2008)

    Article  CAS  Google Scholar 

  89. B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, E. Dutarde, CaCu3Ti4O12 ceramics from co-precipitation method: dielectric properties of pellets and thick films. J. Eur. Ceram. Soc. 29(4), 731–735 (2009)

    Article  CAS  Google Scholar 

  90. B. Jakkree, K. Pinit, T. Prasit, Investigation of the dielectric properties and nonlinear electrical response of CaCu3Ti4O12 ceramics prepared by a chemical combustion method. J. Mater. Sci. 31(6), 4511–4519 (2020)

    Google Scholar 

  91. A. Lopera, M.A. Ramirez, C. Garcia, C. Paucar, J. Marín, Influence of Sm3+ doping on the dielectric properties of CaCu3Ti4O12 ceramics synthesized via autocombustion. Inorg. Chem. Commun. 40, 5–7 (2014)

    Article  CAS  Google Scholar 

  92. S. Grasso, M. Biesuz, L. Zoli, G. Taveri, A.I. Duff, D. Ke, A. Jiang, M.J. Reece, A review of cold sintering processes. Adv. Appl. Ceram. 119(3), 115–143 (2020)

    Article  CAS  Google Scholar 

  93. T. Ibn-Mohammed, C.A. Randall, K.B. Mustapha, J. Guo, J. Walker, S. Berbano, S.C.L. Koh, D. Wang, D.C. Sinclair, I.M. Reaney, Decarbonising ceramic manufacturing: a techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 39(16), 5213–5235 (2019)

    Article  CAS  Google Scholar 

  94. C. Van Nguyen, S.K. Sistla, S. Van Kempen, N.A. Giang, A. Bezold, C. Broeckmann, F. Lange, A comparative study of different sintering models for Al2O3. J. Ceram. Soc. Jpn. 124(4), 301–312 (2016)

    Article  CAS  Google Scholar 

  95. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494(1–2), 175–189 (2010)

    Article  CAS  Google Scholar 

  96. Y. Huang, Y. Qiao, Y. Li, J. He, H. Zeng, Zn-doped calcium copper titanate synthesized via rapid laser sintering of sol-gel derived precursors. Nanomaterials 10(6), 1163 (2020)

    Article  CAS  Google Scholar 

  97. G. Riquet, S. Marinel, Y. Bréard, C. Harnois, Sintering mechanism and grain growth in CaCu3Ti4O12 ceramics. Ceram. Int. 45(7), 9185–9191 (2019)

    Article  CAS  Google Scholar 

  98. J. Zhao, H. Zhao, Z. Zhu, Influence of sintering conditions and CuO loss on dielectric properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 113, 97–101 (2019)

    Article  CAS  Google Scholar 

  99. R. Löhnert, R. Schmidt, J. Töpfer, Effect of sintering conditions on microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics. J. Electroceram. 34(4), 241–248 (2015)

    Article  CAS  Google Scholar 

  100. S.A.A. Alem, R. Latifi, S. Angizi, F. Hassanaghaei, M. Aghaahmadi, E. Ghasali, M. Rajabi, Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review. Mater. Manuf. Process. 35(3), 303–327 (2020)

    Article  CAS  Google Scholar 

  101. D. Wang, L. Li, J. Jiang, Z. Lu, G. Wang, K. Song, D. Zhou, I.M. Reaney, Cold sintering of microwave dielectric ceramics and devices. J. Mater. Res. 33, 1–17 (2021)

    CAS  Google Scholar 

  102. S. Dąbrowska, T. Chudoba, J. Wojnarowicz, W. Łojkowski, Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review. Crystals 8(10), 379 (2018)

    Article  CAS  Google Scholar 

  103. F. Shi, H.L. Dong, D. Zhou, C.H. Wang, Q.L. Tan, J.J. Xiong, Q. Wang, Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics. IET Nanodielectrics 2(1), 11–26 (2019)

    Article  Google Scholar 

  104. G. Yang, S.J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12(7), 1177 (2019)

    Article  CAS  Google Scholar 

  105. C. Mao, L. Xu, V.V. Marchenkov, T.V. Dyachkova, A.P. Tyutyunnik, Y.G. Zainulin, C. Yang, Microstructure and dielectric properties of CaCu3Ti4O12 ceramics by quenching after sintering in low vacuum and thermobaric treatment at 9 GPa. Ceram. Int. 44(16), 20069–20074 (2018)

    Article  CAS  Google Scholar 

  106. R. Kumar, M. Zulfequar, T.D. Senguttuvan, Improved giant dielectric properties in microwave flash combustion derived and microwave sintered CaCu3Ti4O12 ceramics. J. Electroceram. 42(1), 41–46 (2019)

    Article  CAS  Google Scholar 

  107. G. Riquet, S. Marinel, Y. Breard, C. Harnois, A. Pautrat, Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: Microstructures and dielectric properties. Ceram. Int. 44(13), 15228–15235 (2018)

    Article  CAS  Google Scholar 

  108. P.Y. Raval, A.R. Makadiya, P.R. Pansara, P.U. Sharma, N.H. Vasoya, J.A. Bhalodia, S. Kumar, S.N. Dolia, K.B. Modi, Effect of thermal history on structural, microstructural properties and J-E characteristics of CaCu3Ti4O12 polycrystalline ceramic. Mater. Chem. Phys. 212, 343–350 (2018)

    Article  CAS  Google Scholar 

  109. A.A. Mohammed, S.M. Haris, M.Z. Nuawi, Role of piezoelectric elements in finding the mechanical properties of solid industrial materials. Appl. Sci. 8(10), 1737 (2018)

    Article  CAS  Google Scholar 

  110. R.M. Genga, L.A. Cornish, G. Akdogan, Effect of Mo2C additions on the properties of SPS manufactured WC–TiC–Ni cemented carbides. Int. J. Refract Metal Hard Mater. 41, 12–21 (2013)

    Article  CAS  Google Scholar 

  111. E.K. Papynov, A.S. Portnyagin, E.B. Modin, V.Y. Mayorov, O.O. Shichalin, A.P. Golikov, V.S. Pechnikov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, A complex approach to assessing porous structure of structured ceramics obtained by SPS technique. Mater. Charact. 145, 294–302 (2018)

    Article  CAS  Google Scholar 

  112. T. Li, Y. Sun, H.Y. Dai, D.W. Liu, J. Chen, R.Z. Xue, Z.Q. Chen, Influence of spark plasma sintering temperature on the microstructures, dielectric and I–V properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 829, 154595 (2020)

    Article  CAS  Google Scholar 

  113. C. Xu, X. Zhao, L. Ren, J. Sun, L. Yang, J. Guo, R. Liao, Enhanced electrical properties of CaCu3Ti4O12 ceramics by spark plasma sintering: role of Zn and Al co-doping. J. Alloy. Compd. 792, 1079–1087 (2019)

    Article  CAS  Google Scholar 

  114. Y. Chen, D. Zhang, Z. Peng, M. Yuan, X. Ji, Review of research on the rare-earth doping piezoelectric materials. Front. Mater. 8, 203 (2021)

    Article  Google Scholar 

  115. V. Bashan, Y. Ust, Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation. Int. J. Energy Res. 43(14), 7755–7789 (2019)

    CAS  Google Scholar 

  116. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Func. Mater. 29(27), 1808118 (2019)

    Article  CAS  Google Scholar 

  117. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.H. Kim, A. Deep, Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80, 105552 (2020)

    Article  CAS  Google Scholar 

  118. A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J. Alloys Compd. 491(1–2), 507–512 (2010)

    Article  CAS  Google Scholar 

  119. N.A. Zhuk, S.V. Nekipelov, V.N. Sivkov, B.A. Makeev, R.I. Korolev, V.A. Belyy, M.G. Krzhizhanovskaya, M.M. Ignatova, Magnetic susceptibility, XPS and NEXAFS spectroscopy of Ni-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 252, 123310 (2020)

    Article  CAS  Google Scholar 

  120. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv. 6(61), 55984–55989 (2016)

    Article  CAS  Google Scholar 

  121. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, Improved dielectric properties in A′-site nickel-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 100(9), 4021–4032 (2017)

    Article  CAS  Google Scholar 

  122. J. Boonlakhorn, B. Putasaeng, P. Thongbai, Origin of significantly enhanced dielectric response and nonlinear electrical behavior in Ni2+-doped CaCu3Ti4O12: influence of DC bias on electrical properties of grain boundary and associated giant dielectric properties. Ceram. Int. 45(6), 6944–6949 (2019)

    Article  CAS  Google Scholar 

  123. S. Senda, S. Rhouma, E. Torkani, A. Megriche, C. Autret, Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic. J. Alloy. Compd. 698, 152–158 (2017)

    Article  CAS  Google Scholar 

  124. A. Boontum, D. Phokharatkul, J.H. Hodak, A. Wisitsoraat, S.K. Hodak, H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method. Sens. Actuators B 260, 877–887 (2018)

    Article  CAS  Google Scholar 

  125. S. Amhil, S.B. Moumen, A. Bourial, L. Essaleh, Evidence of large hopping polaron conduction process in strontium doped calcium copper titanate ceramics. Physica B 556, 36–41 (2019)

    Article  CAS  Google Scholar 

  126. X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, Effect of semiconductive grain and microstructure on the dielectric properties of CaCu3Ti4O12 ceramics with Sr2+ doping. J. Alloy. Compd. 708, 1026–1032 (2017)

    Article  CAS  Google Scholar 

  127. W. Li, S.Y. Qiu, N. Chen, B.F. Liu, G.P. Du, Enhanced dielectric properties and sinterability of CaCu3Ti4O12 ceramics by Sr2+ doping. Physica B 405(4), 1193–1196 (2010)

    Article  CAS  Google Scholar 

  128. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)

    Article  CAS  Google Scholar 

  129. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002)

    Article  CAS  Google Scholar 

  130. J.W. Lee, J.H. Koh, Enhanced dielectric properties of Ag-doped CCTO ceramics for energy storage devices. Ceram. Int. 43(12), 9493–9497 (2017)

    Article  CAS  Google Scholar 

  131. D. Xu, K. He, R. Yu, X. Sun, Y. Yang, H. Xu, H. Yuan, J. Ma, High dielectric permittivity and low dielectric loss in sol–gel derived Zn doped CaCu3Ti4O12 thin films. Mater. Chem. Phys. 153, 229–235 (2015)

    Article  CAS  Google Scholar 

  132. P.M. Souto, R.R. Menezes, R.H.G.A. Kiminami, Sintering of commercial mulite powder: effect of MgO dopant. J. Mater. Process. Technol. 209(1), 548–553 (2009)

    Article  Google Scholar 

  133. P. Thongbai, T. Yamwong, S. Maensiri, Non-Ohmic and dielectric properties of CaCu3Ti4O12-MgO nanocomposites. Microelectron. Eng. 108, 177–181 (2013)

    Article  CAS  Google Scholar 

  134. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, A novel strategy to enhance dielectric performance and non-Ohmic properties in Ca2Cu2-xMgxTi4O12. J. Eur. Ceram. Soc. 34(12), 2941–2950 (2014)

    Article  CAS  Google Scholar 

  135. Y. Hu, T.S. Jeng, J.S. Liu, Effect of the MgO substitution for CuO on the properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38(4), 3459–3464 (2012)

    Article  CAS  Google Scholar 

  136. W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 26(8), 682–686 (2010)

    Article  CAS  Google Scholar 

  137. L. Singh, U.S. Rai, K.D. Mandal, A.K. Rai, Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic. Appl. Phys. A 112(4), 891–900 (2013)

    Article  CAS  Google Scholar 

  138. D. Xu, K. He, R. Yu, L. Jiao, H. Yuan, X. Sun, G. Zhao, H. Xu, X. Cheng, Effect of AETiO3 (AE= Mg, Ca, Sr) doping on dielectric and varistor characteristics of CaCu3Ti4O12 ceramic prepared by the sol-gel process. J. Alloy. Compd. 592, 220–225 (2014)

    Article  CAS  Google Scholar 

  139. A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3-yMgy)Ti4O12 ceramics: Importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 36(6), 1391–1398 (2016)

    Article  CAS  Google Scholar 

  140. E. Swatsitang, K. Prompa, T. Putjuso, Very high thermal stability with excellent dielectric, and non-ohmics properties of Mg-doped CaCu3Ti4.2O12 ceramics. J. Mater. Sci. 29(15), 12639–12651 (2018)

    CAS  Google Scholar 

  141. X. Wang, L. Xue, Y. Zhang, J. Du, L. Sun, Y. Shi, W. Wang, Y. Liang, Y. Fu, S. Shang, S. Yin, Improved electrical performance of MgO-modified CaCu3Ti4O12 ceramics. Physica B 572, 98–104 (2019)

    Article  CAS  Google Scholar 

  142. S.Y. Chung, S.Y. Choi, T. Yamamoto, Y. Ikuhara, S.J.L. Kang, Site-selectivity of 3 d metal cation dopants and dielectric response in calcium copper titanate. Appl. Phys. Lett. 88(9), 091917 (2006)

    Article  CAS  Google Scholar 

  143. L. Fang, M. Shen, F. Zheng, Z. Li, J. Yang, Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 104(6), 064110 (2008)

    Article  CAS  Google Scholar 

  144. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, Improved dielectric, nonlinear and magnetic properties of cobalt-doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 38(10), 3505–3511 (2018)

    Article  CAS  Google Scholar 

  145. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, S. Du, Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J. Alloy. Compd. 773, 853–859 (2019)

    Article  CAS  Google Scholar 

  146. X. Yue, W. Long, J. Liu, S. Pandey, S. Zhong, L. Zhang, S. Du, D. Xu, Enhancement of dielectric and non-ohmic properties of graded Co-doped CaCu3Ti4O12 thin films. J. Alloy. Compd. 816, 152582 (2020)

    Article  CAS  Google Scholar 

  147. C. Mu, Y. Song, H. Wang, X. Wang, Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 117(17), 17B723 (2015)

    Article  CAS  Google Scholar 

  148. E. Swatsitang, T. Putjuso, Improved non-ohmic and dielectric properties of Cr3+ doped CaCu3Ti4O12 ceramics prepared by a polymer pyrolysis solution route. J. Eur. Ceram. Soc. 38(15), 4994–5001 (2018)

    Article  CAS  Google Scholar 

  149. V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, V.S. Rai, D. Prajapati, T. Das, N.B. Singh, K.D. Mandal, Investigation of dielectric and electrochemical behavior of CaCu3-xMnxTi4O12 (x= 0, 1) ceramic synthesized through semi-wet route. Mater. Chem. Phys. 245, 122804 (2020)

    Article  CAS  Google Scholar 

  150. V. Kumar, S. Pandey, A. Kumar, M.K. Verma, S. Singh, V.S. Rai, D. Prajapati, T. Das, A. Sharma, C.L. Prajapat, A. Gangwar, Investigation of dielectric, magnetic and impedance spectroscopic properties of CaCu3-xMnxTi4-xMnxO12 (X= 0.10) nano-ceramic synthesized through semi-wet route. J. Mater. Res. Technol. 9(6), 12936–12945 (2020)

    Article  CAS  Google Scholar 

  151. E. Swatsitang, K. Prompa, T. Putjuso, Temperature stability of the dielectric properties of Zr4+-doped CaCu3Ti4.2O12 ceramics for X9R capacitor applications. J. Alloy. Compd. 789, 231–239 (2019)

    Article  CAS  Google Scholar 

  152. S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, Dielectric properties of Zr doped CaCu3Ti4O12 synthesized by sol–gel route. J. Alloy. Compd. 551, 456–462 (2013)

    Article  CAS  Google Scholar 

  153. L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, H. Peng, Influence of Zirconium doping on microstructure and dielectric properties of CaCu3Ti4O12 synthesized by the sol–gel method. J. Alloy. Compd. 651, 283–289 (2015)

    Article  CAS  Google Scholar 

  154. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, Microstructural evolution and Maxwell-Wagner relaxation in Ca2Cu2Ti4−xZrxO12: the important clue to achieve the origin of the giant dielectric behavior. Mater. Res. Bull. 60, 695–703 (2014)

    Article  CAS  Google Scholar 

  155. E.A. Patterson, S. Kwon, C.C. Huang, D.P. Cann, Effects of ZrO2 additions on the dielectric properties of CaCu3Ti4 O12. Appl. Phys. Lett. 87(18), 182911 (2005)

    Article  CAS  Google Scholar 

  156. D. Xu, Y. Zhu, B. Zhang, X. Yue, L. Jiao, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, Excellent dielectric performance and nonlinear electrical behaviors of Zr-doped CaCu3Ti4O12 thin films. J. Mater. Sci. 29(6), 5116–5123 (2018)

    CAS  Google Scholar 

  157. A. Hamza, F. Benabdallah, I. Kallel, L. Seveyrat, L. Lebrun, H. Khemakhem, Effect of rare-earth substitution on the electrical properties and Raman spectroscopy of BCTZ ceramics. J. Alloy. Compd. 735, 2523–2531 (2018)

    Article  CAS  Google Scholar 

  158. Q. Wang, M. Liao, Q. Lin, M. Xiong, Z. Mu, F. Wu, A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys Compd. 850, 156744 (2020)

    Article  CAS  Google Scholar 

  159. R. Xue, Z. Chen, H. Dai, D. Liu, T. Li, G. Zhao, Effects of rare earth ionic doping on microstructures and electrical properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 66, 254–261 (2015)

    Article  CAS  Google Scholar 

  160. P. Cheng, Z. Cao, M. Zhou, Q. Wang, S. Li, J. Li, Dielectric properties of CaCu3Ti4O12 ceramics doped by La3+. Ceram. Int. 45(12), 15320–15326 (2019)

    Article  CAS  Google Scholar 

  161. B.S. Prakash, K.B.R. Varma, Microstructural and dielectric properties of donor doped (La3) CaCu3Ti4O12 ceramics. J. Mater. Sci. 17(11), 899–907 (2006)

    Google Scholar 

  162. A. Sakthisabarimoorthi, S.M.B. Dhas, R. Robert, M. Jose, Influence of Erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater. Res. Bull. 106, 81–92 (2018)

    Article  CAS  Google Scholar 

  163. M. Li, Q. Liu, C.X. Li, Study of the dielectric responses of Eu-doped CaCu3Ti4O12. J. Alloy. Compd. 699, 278–282 (2017)

    Article  CAS  Google Scholar 

  164. J.W. Liu, D.Y. Lu, X.Y. Yu, Q.L. Liu, Q. Tao, H. Change, P.W. Zhu, Dielectric properties of Eu-doped CaCu3Ti4O12 with different compensation mechanisms. Acta Metall. Sin. 30(2), 97–103 (2017)

    Article  CAS  Google Scholar 

  165. L. Tang, F. Xue, P. Guo, Z. Xin, Z. Luo, W. Li, Significantly enhanced dielectric properties of Y3+ donor-doped CaCu3Ti4O12 ceramics by controlling electrical properties of grains and grain boundaries. Ceram. Int. 44(15), 18535–18540 (2018)

    Article  CAS  Google Scholar 

  166. F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y-doped calcium copper titanate. J. Am. Ceram. Soc. 93(10), 3043–3045 (2010)

    Article  CAS  Google Scholar 

  167. J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Effects of Y doping ions on microstructure, dielectric response, and electrical properties of Ca1-3x/2Yx Cu3Ti4O12 ceramics. J. Mater. Sci. 26(4), 2329–2337 (2015)

    CAS  Google Scholar 

  168. H. Man, W. Ye, L. Zhang, Y. Deng, S. Zhong, S. Du, D. Xu, Effects of Y doping on dielectric and varistor properties of CaCu3Ti4O12 thin films. J. Electron. Mater. 49(12), 7379–7385 (2020)

    Article  CAS  Google Scholar 

  169. M. Sahu, S. Hajra, R.N.P. Choudhary, Structural, electrical and dielectric characteristics of strontium-modified CaCu3Ti4O12. SN Appl. Sci. 1(1), 1–9 (2019)

    Article  Google Scholar 

  170. R. Espinoza-González, S. Hevia, Á. Adrian, Effects of strontium/lanthanum co-doping on the dielectric properties of CaCu3Ti4O12 prepared by reactive sintering. Ceram. Int. 44(13), 15588–15595 (2018)

    Article  CAS  Google Scholar 

  171. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, A novel approach to achieve high dielectric permittivity and low loss tangent in CaCu3Ti4O12 ceramics by co-doping with Sm3+ and Mg2+ ions. J. Eur. Ceram. Soc. 35(13), 3521–3528 (2015)

    Article  CAS  Google Scholar 

  172. J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Improved dielectric properties of (Y+ Mg) co-doped CaCu3Ti4O12 ceramics by controlling geometric and intrinsic properties of grain boundaries. Mater. Des. 92, 494–498 (2016)

    Article  CAS  Google Scholar 

  173. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, S. Maensiri, Colossal dielectric permittivity and electrical properties of the grain boundary of Ca1−3x/2YbxCu3−yMgyTi4O12 (x= 0.05, y= 0.05 and 0.30). Ceram. Int. 42(7), 8467–8472 (2016)

    Article  CAS  Google Scholar 

  174. Z. Xu, H. Qiang, Y. Chen, Z. Chen, Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 191, 1–5 (2017)

    Article  CAS  Google Scholar 

  175. P. Mao, J. Wang, P. Xiao, L. Zhang, F. Kang, H. Gong, Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. Ceram. Int. 47(1), 111–120 (2021)

    Article  CAS  Google Scholar 

  176. J. Boonlakhorn, P. Thongbai, Substantially enhanced varistor properties and dielectric response in (Zn2+, Sn4+) co-doped CaCu3Ti4O12 ceramics. Ceram. Int. 45(17), 22596–22602 (2019)

    Article  CAS  Google Scholar 

  177. Z. Xu, H. Qiang, Enhanced dielectric properties of Zn and Mn co-doped CaCu3 Ti4O12 ceramics. J. Mater. Sci. 28(1), 376–380 (2017)

    CAS  Google Scholar 

  178. J. Boonlakhorn, P. Srepusharawoot, P. Thongbai, Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In3+/Ta5+) co-doped CaCu3Ti4O12 ceramics. Results Phys. 16, 102886 (2020)

    Article  Google Scholar 

  179. J. Jumpatam, B. Putasaeng, N. Chanlek, J. Boonlakhorn, P. Thongbai, N. Phromviyo, P. Chindaprasirt, Significantly improving the giant dielectric properties of CaCu3Ti4O12 ceramics by co-doping with Sr2+ and F- ions. Mater. Res. Bull. 133, 111043 (2021)

    Article  CAS  Google Scholar 

  180. S. Rhouma, S. Saîd, C. Autret, S. De Almeida-Didry, M. El Amrani, A. Megriche, Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: enhancement of dielectric properties. J. Alloy. Compd. 717, 121–126 (2017)

    Article  CAS  Google Scholar 

  181. S. Rani, N. Ahlawat, K.M. Sangwan, R. Punia, A. Kumar, An approach for correlating electrically heterogeneous structure to enhanced dielectric properties of Sr and Zn co-substituted CaCu3Ti4O12 ceramics. J. Alloy. Compd. 769, 1102–1112 (2018)

    Article  CAS  Google Scholar 

  182. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, Effects of DC bias on dielectric and electrical responses in (Y+ Zn) co-doped CaCu 3 Ti 4 O 12 perovskite oxides. J. Mater. Sci. 28(6), 4695–4701 (2017)

    CAS  Google Scholar 

  183. J. Boonlakhorn, P. Thongbai, Enhanced non-ohmic properties and giant dielectric response of (Sm+Zn) co-doped CaCu3Ti4O12 ceramics. Ceram. Int. 43(15), 12736–12741 (2017)

    Article  CAS  Google Scholar 

  184. J. Mohammed, H.Y. Hafeez, B.I. Adamu, Y.S. Wudil, Z.I. Takai, S.K. Godara, A.K. Srivastava, Tuning the dielectric and optical properties of Pr-Co–substituted calcium copper titanate for electronics applications. J. Phys. Chem. Solids 126, 85–92 (2019)

    Article  CAS  Google Scholar 

  185. J. Jumpatam, N. Chanlek, M. Takesada, P. Thongbai, Giant dielectric behavior of monovalent cation/anion (Li+, F) co-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 103(3), 1871–1880 (2020)

    Article  CAS  Google Scholar 

  186. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, (Al3+, Nb5+) co–doped CaCu3Ti4O12: an extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity. J. Eur. Ceram. Soc. 38(1), 137–143 (2018)

    Article  CAS  Google Scholar 

  187. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, P. Khandelwal, Dielectric and impedance studies of La and Zn co-doped complex perovskite CaCu3Ti4O12 ceramic. Ceram. Int. 44(18), 23125–23136 (2018)

    Article  CAS  Google Scholar 

  188. J. Boonlakhorn, J. Manyam, S. Krongsuk, P. Thongbai, P. Srepusharawoot, Enhanced dielectric properties with a significantly reduced loss tangent in (Mg2+, Al3+) co-doped CaCu3Ti4O12 ceramics: DFT and experimental investigations. RSC Adv. 11(40), 25038–25046 (2021)

    Article  CAS  Google Scholar 

  189. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, Significantly improved giant dielectric response in giant dielectric response in CaCu295Ni0.05Ti4-xGexO12 (x= 0.05, 0.10) ceramics. Mater. Today Commun. 21, 100633 (2019)

    Article  CAS  Google Scholar 

  190. H. Qiang, Z. Xu, Structure and enhanced dielectric properties of B and Sr modified CaCu3 Ti4 O12 ceramics. J. Electron. Mater. 48(10), 6354–6358 (2019)

    Article  CAS  Google Scholar 

  191. T. Jardiel, A.C. Caballero, M. Villegas, Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics. J. Ceram. Soc. Jpn. 116(1352), 511–518 (2008)

    Article  CAS  Google Scholar 

  192. M. Rizwan, S. Gul, T. Iqbal, U. Mushtaq, M.H. Farooq, M. Farman, R. Bibi, M. Ijaz, A review on perovskite lanthanum aluminate (LaAlO3), its properties and applications. Mater. Res. Express 6(11), 112001 (2019)

    Article  CAS  Google Scholar 

  193. P. Sehrawat, R.K. Malik, P. Boora, M. Punia, M. Sheoran, P. Chhillar, S.P. Khatkar, V.B. Taxak, Multicolor luminescence evolving from single-phase Eu3+/Tb3+ co-doped SrLaAlO4 nanomaterials for advanced photonic appliances. Chem. Phys. Lett. 763, 138243 (2021)

    Article  CAS  Google Scholar 

  194. F. Bahri, H. Khemakhem, Dielectric properties of Bi-doped Ba0.8Sr0.2TiO3 ceramic solid solutions. Ceram. Int. 39(7), 7571–7575 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

There has been no significant financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

SGI: conceptualization, methodology, writing—original draft. AA and RSR: investigation and review & editing. SD and JDR: review & editing, visualization, formal analysis, SJD and CJR: conceptualization, methodology, review & editing, supervision.

Corresponding authors

Correspondence to S. Jerome Das or C. Justin Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest associated with this publication.

Research involving human and animal participants

The research did not involve any human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infantiya, S.G., Aslinjensipriya, A., Reena, R.S. et al. Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review. J Mater Sci: Mater Electron 33, 15992–16028 (2022). https://doi.org/10.1007/s10854-022-08511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08511-3

Navigation