Skip to main content

Advertisement

Log in

Dielectric Properties of Eu-Doped CaCu3Ti4O12 with Different Compensation Mechanisms

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

To get a better understanding of the influence of rare-earth element doping, CaCu3Ti4O12 (CCTO) samples with a partial substitution of Ca with Eu with different compensation mechanisms were designed and prepared by solid-state reaction. All the ceramics were single phase, while the dielectric constants and thermally activated energy values for dielectric relaxation in Eu-doped ceramics were both lower than those of CCTO. Ca0.875Eu0.1Cu3Ti4O12 (CECT1) exhibited a slight decrease in both the permittivity and electric resistance of grain boundaries compared with CCTO, while Ca0.85Eu0.1Cu3Ti4O12 (CECT2) underwent a sharp decrease in permittivity associated with an abnormally large resistance. The different dielectric behavior indicates that the dielectric properties of CCTO are sensitive to the valence states of cations and defects. The variation of permittivity is related to the localization of carriers, which, according to the XPS results, should be caused by the presence of oxygen vacancies. The formation of defect complexes between cations and oxygen vacancies leads to the increase in resistance and prevents the hopping between Cu+ and Cu2+, which is an important source of the polarization in grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. S.Y. Chung, I.D. Kim, S.J. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  3. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  4. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  5. T.T. Fang, L.T. Mei, J. Am. Ceram. Soc. 90, 638 (2007)

    Article  Google Scholar 

  6. T.T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005)

    Article  Google Scholar 

  7. L.X. Feng, X.M. Tang, Y.Y. Yan, X.Z. Chen, Z.K. Jiao, G.H. Cao, Phys. Status Solidi A 203, R22 (2006)

    Article  Google Scholar 

  8. L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)

    Article  Google Scholar 

  9. R.Z. Xue, Z.P. Chen, H.Y. Dai, D.W. Liu, T. Li, G.Y. Zhao, Mater. Res. Bull. 66, 254 (2015)

    Article  Google Scholar 

  10. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103 (2014)

    Article  Google Scholar 

  11. R. Yu, H. Xue, Z.L. Cao, L. Chen, Z.X. Xiong, J. Eur. Ceram. Soc. 32, 1245 (2012)

    Article  Google Scholar 

  12. D.Y. Lu, M. Sugano, X.Y. Sun, W.H. Su, Appl. Surf. Sci. 242, 318 (2005)

    Article  Google Scholar 

  13. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  Google Scholar 

  14. W. Hao, J. Zhang, Y. Tan, M. Zhao, C. Wang, J. Am. Ceram. Soc. 94, 1067 (2011)

    Article  Google Scholar 

  15. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257 (2012)

    Article  Google Scholar 

  16. R. Schmidt, D.C. Sinclair, Chem. Mater. 22, 6 (2010)

    Article  Google Scholar 

  17. R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)

    Article  Google Scholar 

  18. L. Ni, X.M. Chen, X.Q. Liu, Mater. Chem. Phys. 124, 982 (2010)

    Article  Google Scholar 

  19. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Mater. Sci.: Mater. Electron. 23, 795 (2012)

    Google Scholar 

  20. M. Li, D.C. Sinclair, J. Appl. Phys. 111, 054106 (2012)

    Article  Google Scholar 

  21. K.D. Mandal, L. Singh, S. Sharma, U.S. Rai, M.M. Singh, J. Sol-Gel Sci. Technol. 66, 50 (2013)

    Article  Google Scholar 

  22. O. Parkash, D. Kumar, A. Goyal, A. Agrawal, A. Mukherjee, S. Singh, P. Singh, J. Phys. D Appl. Phys. 41, 035401 (2008)

    Article  Google Scholar 

  23. X.J. Luo, Y.S. Liu, C.P. Yang, S.S. Chen, S.L. Tang, K. Barner, J. Eur. Ceram. Soc. 35, 2073 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 21271084 and 11264024) and the Open Project of State Key Laboratory of Superhard Materials (No. 201608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Yong Lu or Pin-Wen Zhu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JW., Lu, DY., Yu, XY. et al. Dielectric Properties of Eu-Doped CaCu3Ti4O12 with Different Compensation Mechanisms. Acta Metall. Sin. (Engl. Lett.) 30, 97–103 (2017). https://doi.org/10.1007/s40195-016-0522-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0522-y

Keywords

Navigation