Skip to main content
Log in

Electrochemical determination of hydrazine using facilely synthesized Sn-decorated α-Fe2O3 nanoparticles modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electroanalytical properties of Sn-decorated α-Fe2O3 nanoparticles have been synthesized by a facile co-precipitation method and the obtained nanoparticles were successfully used for determination of hydrazine. The structural and morphological of the as-prepared nanoparticles were employed using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques. It was revealed from HR-TEM micrographs that tiny Sn nanoparticles grew well on the surface of α-Fe2O3 nanostructure. Optical property of the sample was characterized using UV–Vis spectroscopy. Electrocatalytic activities of Sn/α-Fe2O3 modified electrode was studied using cyclic voltammetry and amperometric measurements in 0.1 M PBS electrolyte towards N2H4 electro-oxidation. The limit of detection for the determination of N2H4 was found to be 10 nM. The modified electrode possessed sensitivities of 41.04 µA cm−2 mM−1 and 13.05 µA cm−2 mM−1 and wide linear ranges from 0.01 × 10−6 to 2.5 × 10−3 M with co-relation coefficient of R2 = 0.998 and R2 = 0.997, respectively. The Sn/α-Fe2O3 modified electrode also proves good reproducibility, long-term stability, selectivity and good antifouling properties. The Sn/α-Fe2O3 modified electrode sensor successfully demonstrated the practical applicability for detection of N2H4 in the real sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable

References

  1. M. Taguchi, S. Takami, T. Adschiri, T. Nakane, K. Sato, T. Naka, Supercritical hydrothermal synthesis of hydrophilic polimer-modified water-dispersible CeO2 nanoparticles. Cryst. Eng. Commun. 13, 2841 (2011)

    Article  CAS  Google Scholar 

  2. P.C. Pandey, A. Prakash, Effect of variable nanogeometry of titanium oxide-gold nanocomposite: application in electrochemical sensing of hydrazine. J. Phys. Chem. Biophys. 4, 1000134 (2014)

    Google Scholar 

  3. S.P. Kim, S.G. Lee, M.Y. Choi, H.C. Choi, Highly sensitive hydrazine chemical sensor based on CNT-PdPt nanocomposites. J. Nanomater. 16, 298 (2015)

    Google Scholar 

  4. C. Feng, G. Xu, H. Liu, J. Lv, Z. Zheng, Y. Wu, Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays. J. Solid State Electrochem. 18, 163 (2014)

    Article  CAS  Google Scholar 

  5. Y. Ding, Y. Wang, L. Zhang, H. Zhang, C.M. Li, Y. Lei, Preparation of TiO2–Pt hybrid nanofibers and their application for sensitive hydrazine detection. Nanoscale 3, 1149 (2011)

    Article  CAS  Google Scholar 

  6. G. Manibalan, G. Murugadoss, R. Thangamuthu, R.M. Kumar, R. Jayavel, Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications. J. Alloys Compd. 773, 449 (2019)

    Article  CAS  Google Scholar 

  7. C. Rajkumar, B. Thirumalraj, S.M. Chen, P. Veerakumar, S.B. Liu, Ruthenium nanoparticles decorated tungsten oxide as a bifunctional catalyst for electrocatalytic and catalytic applications. ACS Appl. Mater. Interfaces 9, 31794 (2017)

    Article  CAS  Google Scholar 

  8. N. Selvi, N. Padmanathan, K. Dinakaran, S. Sankar, Effect of ZnO, SiO2 dual shells on CeO2 hybrid core-shell nanostructures and their structural, optical and magnetic properties. RSC Adv. 4, 55745 (2014)

    Article  CAS  Google Scholar 

  9. G. Manibalan, G. Murugadoss, R. Thangamuthu, P. Ragupathy, R.M. Kumar, R. Jayavel, Enhanced electrochemical supercapacitor and excellent amperometric sensor performance of heterostructure CeO2-CuO nanocomposites via chemical route. Appl. Surf. Sci. 456, 104 (2018)

    Article  CAS  Google Scholar 

  10. G. Manibalan, G. Murugadossb, R. Thangamuthu, M.R. Kumar, R.M. Kumar, R. Jayavel, CeO2-based heterostructure nanocomposite for electrochemical determination of L-cysteine biomolecule. Inorg. Chem. Commun. 113, 107793 (2020)

    Article  CAS  Google Scholar 

  11. G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R.M. Kumar, Facile synthesis of CeO2-SnO2 nanocomposite for electrochemical determination of L-cysteine. J. Alloys and Compds. 792, 1150 (2019)

    Article  CAS  Google Scholar 

  12. S. Majamder, B. Saha, S. Dey, R. Mondal, S. Kumar, S. Banerjee, A highly sensitive non-enzymatic hydrogen peroxide and hydrazine electrochemical sensor based on 3D micro-snowflake architectures of α-Fe2O3. RSC Adv. 6, 59907 (2016)

    Article  Google Scholar 

  13. Z. Wang, C. Ma, H. Wang, Z. Liu, Z. Hao, Facilely synthesized Fe2O3/graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J. Alloys Compd. 552, 486 (2013)

    Article  CAS  Google Scholar 

  14. D. Xiang, L. Yin, C. Wang, L. Zhang, High electrochemical performance of RuO2-Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106, 103 (2016)

    Article  CAS  Google Scholar 

  15. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Mater. Chem. Phys. 134, 590–596 (2012)

    Article  CAS  Google Scholar 

  16. G. Manibalan, G. Murugadoss, R. Thangamuthu, R.M. Kumar, M.R. Kumar, R. Jayavel, Enhanced photocatalytic activity of CeO2@α-MoO3 heterostructure. J. Mater. Sci.: Mater. Electron. 29, 13692 (2018)

    CAS  Google Scholar 

  17. Y. Liu, B. Liu, Q. Wang, Y. Liu, C. Li, W. Hu, P. Jing, W. Zhao, J. Zhang, Three dimensionally ordered macroporous Au/CeO2 catalysts synthesized via different methods for enhanced CO preferential oxidation in H2-rich gases. RSC Adv. 4, 5975 (2014)

    Article  CAS  Google Scholar 

  18. H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526 (2012)

    Article  CAS  Google Scholar 

  19. Z. Chen, Y.J. Xu, Ultrathin TiO2 layer coated-cds spheres core-shell nanocomposite with enhanced visible-light photoactivity. ACS Appl. Mater. Interfaces 5, 13353 (2013)

    Article  CAS  Google Scholar 

  20. G. Manibalan, G. Murugadoss, R. Thangamuthu, R.M. Kumar, R. Jayavel, M.R. Kumar, Enhanced photocatalytic performance of heterostructure CeO2-SnO2 nanocomposite via hydrothermal route. Mater. Res. Express 6, 075032 (2019)

    Article  CAS  Google Scholar 

  21. J. Liu, Y. Li, J. Jiang, X. Huang, C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Trans. 39, 8693 (2010)

    Article  CAS  Google Scholar 

  22. F.A. Harraza, A.A. Ismail, S.A.A. Sayari, A.A. Hajry, M.S.A. Assiri, Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens Actuators B 234, 573 (2016)

    Article  Google Scholar 

  23. A.A. Ismail, F.A. Harraz, M. Faisal, A.M.E. Toni, A.A. Hajry, M.S.A. Assiri, A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposite. Mater. Des. 109, 530 (2016)

    Article  CAS  Google Scholar 

  24. S. Barthwal, N.B. Singh, ZnO-CNT nanocomposite: a device as electrochemical sensor. Mater. Today: Proc. 4, 5552 (2017)

    Google Scholar 

  25. J. Ding, T. Liu, W. Sun, J. Li, G. Wei, Z. Su, One-step hydrothermal synthesis, characterization and electrochemical sensor application of ternary Mn-Mo-O hybrid materials. Sens. Actuators B 236, 450 (2016)

    Article  CAS  Google Scholar 

  26. M.M. Rahman, M.M. Alam, A.M. Asiri, Selective hydrazine sensor fabrication with facile low-dimensional Fe2O3/CeO2 nanocubes. New J. Chem. 42, 10263 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Chancellor, President and Vice Chancellor, Sathyabama Institute of Science and Technology, Chennai for the support and encouragement. The authors (R. Jothiramalignam) grateful and thankful to Researchers Supporting Project Number (RSP-2021/354) for financial support and King Saud University, Riyadh, Saudi Arabia. HMY acknowledges the Science & Engineering Research Board (SERB), a statutory body of the Department of Science & Technology (DST), Government of India for the award of Ramanujan Fellowship (RJF/2020/000077).

Author information

Authors and Affiliations

Authors

Contributions

GM contributed to Conceptualization, Methodology, Data Curation, Writing—Original Draft, Project administration; GM contributed to formal analysis, Investigation, Writing—Original Draft; SH contributed to Formal analysis, Investigation, Data Curation; MRK contributed to Formal analysis, Data Curation; RJR contributed to Formal analysis, Data Curation, HMY contributed to Formal analysis.

Corresponding author

Correspondence to Govindhasamy Murugadoss.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugadoss, G., Manibalan, G., Hazra, S. et al. Electrochemical determination of hydrazine using facilely synthesized Sn-decorated α-Fe2O3 nanoparticles modified electrode. J Mater Sci: Mater Electron 33, 13593–13603 (2022). https://doi.org/10.1007/s10854-022-08294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08294-7

Navigation