Skip to main content
Log in

Green Synthesis of Highly Fluorescent NCQDs: A Comprehensive Study on Synthesis, Characterization, Photophysical Properties, pH Sensing, Heavy Metal Detection, and Solvatochromic Behavior through Hydrothermal Method

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Solvatochromic studies in conjunction with NCQDs and analysis of material at different pH levels provide valuable insights about the process of metal ion sensing. Metal ion sensing holds significant importance in various fields like environment monitoring, biomedical diagnostics and various industrial purpose. The detection of metal ions by mixing the nitrogen-doped quantum dots (NCQDs) in the solvent at different pH levels for the analysis of the photoluminescence spectra is the unique property to achieve selective metal ion detection. In present study, the synthesis of NCQDs was performed by the use of flowers of Tecoma stans. The synthesis of NCQDs to best of our knowledge using flowers of Tecoma stans as natural carbon source via hydrothermal process has been done for the first time. The NCQDs exhibit absorption bands ranging from 190 to 450 nm, with the energy band gap varying from 3.55 to 5.42 eV when mixed with different solvent such as, 1–4 dioxane, acetone, acetonitrile, ethyl- acetate, ethanol, methanol and toluene. The fluorescence spectra exhibited highly intense range from approximately 390 to 680 nm across various solvents. XRD analysis further confirmed the crystalline nature of the particles with an average size of 6.96 nm. Different peak positions of the FTIR spectra support functional groups having C-H stretching, C = O (carbonyl) stretching, and C = C stretching vibrations. In the study a notable solvatochromic shift was observed, indicating sensitivity to change in solvent polarity. Additionally, the investigation of the ratio of ground to excited state dipole moment based on solvatochromic shift yielded a value of 3.30. This provide valuable information about optical and electronic properties of NCQDs. Overall, our study sheds light on the unique properties of NCQDs synthesized from Tecoma stans flowers and their potential applications in metal ion sensing, pH probing, and solvent polarity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sharma VD, Vishal V, Chandan G, Bhatia A, Chakrabarti S, Bera MK (2022) Green, sustainable, and economical synthesis of fluorescent nitrogen-doped carbon quantum dots for applications in optical displays and light-emitting diodes. Mater Today Sustain 19:100184. https://doi.org/10.1016/j.mtsust.2022.100184

    Article  Google Scholar 

  2. Dhariwal J, Rao GK, Vaya D (2024) Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RSC Sustain 2:11–36

    Article  CAS  Google Scholar 

  3. Badilla AN, Ayala GC, Beleño YD, Sánchez MCH, Hurtado RB, Pérez JEL, Macias AH, Valadez MC (2023) Green Synthesis for Carbon Quantum Dots via Opuntia ficus-indica and Agave maximiliana: surface-enhanced Raman scattering sensing applications, ACS omega. 8(37):33342–33348. https://doi.org/10.1021/acsomega.3c02735

    Article  CAS  Google Scholar 

  4. Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17:92. https://doi.org/10.1186/s12951-019-0525-8

    Article  CAS  Google Scholar 

  5. Yang X, Wang D, Luo N, Feng M, Peng X, Liao X (2020) Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochim Acta Part A Mol Biomol Spectrosc 239:118462. https://doi.org/10.1016/j.saa.2020.118462

    Article  CAS  Google Scholar 

  6. Ozyurt D, Al. M, Kobaisi RK, Hocking B, Fox (2023) Properties, synthesis, and applications of carbon dots: a review. Carbon Trends 12:100276. https://doi.org/10.1016/j.cartre.2023.100276

    Article  CAS  Google Scholar 

  7. Zhou C, Du J, Zhao H, Xiong Z, Zhao L (2023) Green synthetic carbon quantum dots based on waste tobacco leaves and its application to detecting borax content in flour and its products. J Mol Struct 1278:134959. https://doi.org/10.1016/j.molstruc.2023.134959

    Article  CAS  Google Scholar 

  8. Devi P, Saini S, Kim K-H (2019) The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 141:111158. https://doi.org/10.1016/j.bios.2019.02.059

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Li Y, Sun K, Fan J, Zhang P, Meng H, Yang B (2015) Nitrogen-doped carbon quantum dots with oxygen-rich functional groups. J Am Chem Soc 137:5310–5317

    Google Scholar 

  10. Wang Y, Hu A, Carbonaro RF (2019) Enhanced fluorescence emission of nitrogen-doped carbon quantum dots by localized surface plasmon resonance. J Lumin 212:60–64

    Google Scholar 

  11. Wang C, Hu T, Wen Z, Zhou J, Wang X, Wu Q (2018) Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron (III) detection and multicolor bioimaging. J Colloid Interface Sci 521:33–41. https://doi.org/10.1016/j.jcis.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Wang Y, Feng X, Zhang F, Yang Y (2016) Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Appl Surf Sci 387:1236–1246. https://doi.org/10.1016/j.apsusc.2016.07.048

    Article  CAS  Google Scholar 

  13. Esmaeili M, Wu Z, Chen D, Singh A, Sonar P (2022) Composition and concentration-dependent photoluminescence of nitrogen-doped carbon dots. Adv Powder Technol 33:103560. https://doi.org/10.1016/j.apt.2022.103560

    Article  CAS  Google Scholar 

  14. Kaur J, Sharma S, Mehta SK, Kansal SK (2020) Highly photoluminescent and pH sensitive nitrogen doped carbon dots (NCDs) as a fluorescent sensor for the efficient detection of cr (VI) ions in aqueous media. Spectrochim Acta Part A Mol Biomol Spectrosc 227:117572. https://doi.org/10.1016/j.saa.2019.117572

    Article  CAS  Google Scholar 

  15. Moniruzzaman M, Kim J (2019) N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sens Actuators B 295:12–21. https://doi.org/10.1016/j.snb.2019.05.035

    Article  CAS  Google Scholar 

  16. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253. https://doi.org/10.1039/C2JM34690G

    Article  CAS  Google Scholar 

  17. Wang F, Chen YH, Liu CY, Ma D (2013) White-light-emitting CdSe quantum dots/ nitrogen-doped carbon dots: toward application in white light-emitting diodes. Angew Chem Int Ed 52:1–5

    CAS  Google Scholar 

  18. Li YX, Lee JY, Hu HLCC, Chiu TC (2021) Highly fluorescent nitrogen-doped carbon dots for selective and sensitive detection of Hg2+ and ClO ions and fluorescent ink. J Photochem Photobiol A 405:112931. https://doi.org/10.1016/j.jphotochem.2020.112931

    Article  CAS  Google Scholar 

  19. Echeverry-Gonzalez CA, Kouznetsov VV (2021) Carbon Dots: An Insight into Their Application in Heavy Metal Sensing Recent Progress in Materials. Recent Progress Mater. https://doi.org/10.21926/rpm.2102015

    Article  Google Scholar 

  20. Huang SW, Lin YF, Li YX, Hu CC, Chiu TC (2019) Synthesis of fluorescent Carbon dots as selective and sensitive probes for cupric ions and cell imaging. Molecules 24:1785. https://doi.org/10.3390/molecules24091785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tangod VB, Mastiholi BM, Raikar P, Kulkarni SG, Raikar US (2015) Studies of the photophysics of highly fluorescent red mega 480 laser dye in solutions: steady state spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 148:105–113. https://doi.org/10.1016/j.saa.2015.03.119

    Article  CAS  Google Scholar 

  22. Chemla DS, Zyss J (1987) Non-linear Optical Properties of Organic Molecules and Crystals, Academic Press, 1, New York. https://doi.org/10.1016/B978-0-12-170611-1.X5001-3

  23. Liptay W (1974) Dipole Moments and Polarizabilities of Molecules in Excited Electronic States, Excited states, 1, Academic Press, NewYork. https://doi.org/10.1016/B978-0-12-227201-1.50009-7

  24. Kawski A, Rabek JF (1992) Progress in Photochemistry and Photophysics, fifth edn. CRC, Boca Raton

    Google Scholar 

  25. Lombardi JR (1970) Correlation between structure and dipole moments in the excited states of substituted benzenes. J Am Chem Soc 92:1831–1833

    Article  CAS  Google Scholar 

  26. De Haas MP, Warman JM (1982) Photon-induced molecular charge separation studied by nanosecond time-resolved microwave conductivity. Chem Phys 73:35–53. https://doi.org/10.1016/0301-0104(82)85148-3

    Article  Google Scholar 

  27. Mohammad-Jafarieh P, Akbarzadeh A, Salamat R, Jamshidi-Ghaleh K (2021) Solvent effect on the absorption and emission spectra of carbon dots: evaluation of ground and excited state dipole moment. BMC Chem 15:53. https://doi.org/10.1186/s13065-021-00779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zakerhamidi MS, Ghanadzadeh A, Moghadam M (2012) Solvent effects on the UV/Visible absorption Spectra of some Aminoazobenzene Dyes. Chem Sci Trans 1:1–8. https://doi.org/10.7598/cst2012.118

    Article  CAS  Google Scholar 

  29. Koutek B (1978) Dipole moments in excited state. Statistical investigation of methods employing solvatochromism. Collect Czechoslov Chem Commun 43:2368–2386. https://doi.org/10.1135/cccc19782368

    Article  CAS  Google Scholar 

  30. Woldegiorges K, Belay A, Kebede A, Abebe T (2021) Estimating the ground and excited state dipole moments of levofloxacin and norfloxacin drugs using Solvatochromic effects and computational work. J Spectrosc. https://doi.org/10.1155/2021/7214182

    Article  Google Scholar 

  31. Pandey N, Tewari N, Pant S, Mehata MS (2022) Solvatochromism and estimation of ground and excited state dipole moments of 6-aminoquinoline. Spectrochim Acta A Mol Biomol Spectrosc 267:120498. https://doi.org/10.1016/j.saa.2021.120498

    Article  CAS  PubMed  Google Scholar 

  32. Saroj MK, Sharma N, Rastogi RC (2012) Photophysical Study of some 3 Benzoylmethyleneindol-2-ones and estimation of Ground and Excited States Dipole moments from Solvatochromic Method using Solvent Polarity parameters. J Mol Struct 1012:73–86. https://doi.org/10.1016/j.molstruc.2011.12.043

    Article  CAS  Google Scholar 

  33. Joshi S, Bhattacharjee R, Varma YT, Pant DD (2013) Estimation of ground and excited state dipole moments of quinidine and quinidine dication: experimental and numerical methods. J Mol Liq 179:88–93. https://doi.org/10.1016/j.molliq.2012.11.023

    Article  CAS  Google Scholar 

  34. Joshi S, Pant DD (2012) Ground and excited state dipole moments of quinine sulfate dication: solvatochromic shift of absorption and fluorescence spectra. J Mol Liq 172:125–129. https://doi.org/10.1016/j.molliq.2012.04.002

    Article  CAS  Google Scholar 

  35. Mangalagiu II, Florescu M, Zbancioc G, Caprosu M, Solvatochromic Study of Two Pyridazinium Ylids Binary, Mangalagiu II, Florescu M, Zbancioc G, Caprosu M (2007) Solvatochromic Study of Two Pyridazinium Ylids Binary Solutions. J Phys Conf Ser 61:484–486. https://doi.org/10.1515/kbo-2016-0103

    Article  Google Scholar 

  36. Zbancioc G, Huhn T, Groth U, Deleanu C, Mangalagiu II (2010) Pyrrolodiazine derivatives as blue organic luminophores: synthesis and properties. Part 3. Tetrahedron. 66 (2010) 4298–4306 66:4298–4306. https://doi.org/10.1016/j.tet2010.04.050

    Article  CAS  Google Scholar 

  37. Singh S, Miller CT, Singh P (2024) A comprehensive review on ecology, life cycle and use of Tecoma stans (bignoneaceae). Bot Stud. https://doi.org/10.1186/s40529-024-00412-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sbihi HM, Mokbli S, Nehdi IA, Al-Resayes SI (2015) Physico-chemical properties of Tecoma stans. Linn. Seed oil: a new crop for vegetable oil. Nat Prod Res 29:1249–1255. https://doi.org/10.1080/14786419.2015.1024118

    Article  CAS  PubMed  Google Scholar 

  39. Taher MA, Dawood DH, Sanad MI, Hassan RA (2016) Searching for anti-hyper glyce micphyto molecules of Tecoma stans. Eur J Chem 7:397–404. https://doi.org/10.5155/eurjchem.7.4.397-404.1478

    Article  CAS  Google Scholar 

  40. Bakr RO, Fayed MA, Salem MA, Hussein AS (2019) Tecoma stans: alkaloid profile and antimicrobial activity. J Pharm Bioallied Sci 11:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khatak S, Mali DK, Dahiya R (2019) Tecoma stans: a noxious weed put to beneficial use. Int J Chem Stud 7:296–299

    CAS  Google Scholar 

  42. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M (2020) Hydrothermal synthesis of nanomaterials. J Nanomater. https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  43. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b) 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  44. Bouafia A, Laouini SE, Tedjani ML, Ali GAM, Barhoum A (2022) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text Res J 92:2685–2696

    Article  CAS  Google Scholar 

  45. Gherbi B, Laouini SE, Meneceur S, Bouafia A, Hemmami H, Tedjani ML, Thiripuranathar G, Barhoum A, Menaa F (2022) Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: efficiency for photocatalytic adsorption of methyl orange. Sustainability 14:11300. https://doi.org/10.3390/su141811300

    Article  CAS  Google Scholar 

  46. Joshi NC, Kumar N (2022) Potential of PTH-Fe3O4 based nanomaterial for the removal of pb(II),cd(II),andCr(VI)ions. J Inorg Organomet Polym Mater 32:1234–1245. https://doi.org/10.1007/s10904-021-02173-0

    Article  CAS  Google Scholar 

  47. Nguyen TN, Le PA, Phung VBT (2020) Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: synthesis and investigation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00839-2

    Article  Google Scholar 

  48. Li Y, Zhang Q, Zhang J, Jin L, Zhao X, Xu T (2015) A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure. Sci Rep 5:14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsade H, Abebe B, Murthy HCA (2019) Nano sized Fe–Al oxide mixed with natural maize cob sorbent for lead remediation. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab1a80

    Article  Google Scholar 

  50. Perumal S, Atchudan R, Thirukumaran P, Yoon DH, Lee YR, Cheong IW (2022) Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. Chemosphere 286. https://doi.org/10.1016/j.chemosphere.2021.131760

    Article  PubMed  Google Scholar 

  51. Hou Y, Zhang R, Cheng H, Wang Y, Zhang Q, Zhang L, Wang L, Li R, Wu X, Li B (2023) Mg2+doped carbon dots synthesized based on Lycium ruthenicum in cell imaging and promoting osteogenic differentiation in vitro. Colloids Surf Physicochem Eng Asp 656:130264. https://doi.org/10.1016/j.colsurfa.2022.130264

    Article  CAS  Google Scholar 

  52. Wu P, Li W, Wu Q, Liu Y, Liu S (2017) Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3 + ions in an acidic environment. RSC Adv 7:44144–44153. https://doi.org/10.1039/C7RA08400E

    Article  CAS  Google Scholar 

  53. Shaikh AF, Tamboli MS, Patil RH, Bhan A, Ambekar JD, Kale BB (2019) Bioinspired Carbon Quantum dots: an Antibiofilm Agent. J Nanosci Nanotechnol 19:2339–2345. https://doi.org/10.1166/jnn.2019.16537

    Article  CAS  PubMed  Google Scholar 

  54. Feng Z, Li Z, Zhang X, Shi Y, Zhou N (2017) Nitrogen-Doped Carbon Quantum dots as fluorescent probes for sensitive and selective detection of Nitrite. Molecules 22:2061. https://doi.org/10.3390/molecules22122061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang ZL (2001) Transmission electron microscopy and spectroscopy of nanoparticles. In: Characterization of Nanophase Materials, 18, Wiley, Weinheim, Germany. https://doi.org/10.1002/1521-4117(200110)18:3%3C142::AID-PPSC142%3E3.0.CO;2-N

  56. Shen L, Zhang L, Chen M, Chen X, Wang J (2013) The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 55:343–349. https://doi.org/10.1016/j.carbon.2012.12.074

    Article  CAS  Google Scholar 

  57. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SX (2014) Carbon dots with continuously tunable full-Color Emission and their application in Ratiometric pH sensing. Chem Mater 26:3104–3112. https://doi.org/10.1021/cm5003669

    Article  CAS  Google Scholar 

  58. Tan XW, Romainor ANB, Chin SF, Ng SM (2014) Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J Anal Appl Pyrol 105:157–165. http://hdl.handle.net/1959.3/371621

    Article  CAS  Google Scholar 

  59. Pu J, Liu C, Wang B, Liu P, Jin Y, Chen J (2021) Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+. Analyst 146:1032–1039. https://doi.org/10.1039/D0AN02075C

    Article  CAS  PubMed  Google Scholar 

  60. Kumari R, Varghese A, George L, Sudhakar SYN (2017) Effect of solvent polarity on the photophysical properties of chalcone derivatives. RSC Adv 7:24204–24214. https://doi.org/10.1039/C7RA01705G

    Article  CAS  Google Scholar 

  61. Parkanyi C, Aaron JJ (1998) Dipole moments of aromatic heterocycles. Theor Comput Chem 5:233–258. https://doi.org/10.1016/S1380-7323(98)80011-3

    Article  Google Scholar 

  62. Adenier A, Aaron JJ, Parkanyi C, Deng G (1996) Sallah, solvent effects on the electronic absorption and fluorescence emission spectra of merocyanine 540-a biological probe. Heterocycl Commun 2:403–408. https://doi.org/10.1515/HC.1996.2.5.403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. B.S. Rawat, one of the contributors, expresses gratitude to the Division of research & Innovation, Uttaranchal University, Dehradun for facilitating the research facilities.

Funding

The present work was carried out with the support of seed money (Ref: UU/DRI/SM/2023-24/008) provided by Uttaranchal University, Dehradun.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Poonam Negi supervised the article and conducted the characterization part, Dr. Bhupendra Singh Rawat conceptualized and performed the analysis of the dipole moment, Dr. Naveen Chandra Joshi was responsible for the experimental work on heavy metal detection and Dr. Narinder Kumar was for the interpretation of the same, Dr. Kanak Pal Singh Parmar and Dr. Shuchi Upadhyay focused on the experiments and analysis of the fluorescence part, Dr. Vinod Singh curated the data.

Corresponding author

Correspondence to Bhupendra Singh Rawat.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All the authors consent to publishing the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, P., Rawat, B.S., Joshi, N.C. et al. Green Synthesis of Highly Fluorescent NCQDs: A Comprehensive Study on Synthesis, Characterization, Photophysical Properties, pH Sensing, Heavy Metal Detection, and Solvatochromic Behavior through Hydrothermal Method. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03710-z

Keywords

Navigation