Skip to main content
Log in

Effect of ZnO Nanoparticles on the Sintering Behavior and Physical Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sintered Bi0.5(Na0.8K0.2)0.5TiO3 + x wt.% ZnO nanoparticle (BNKT–xZnOn) ceramics have been fabricated by conventional annealing with the aid of ultrasound waves for preliminary milling. Because of the presence of the liquid Bi2O3–ZnO phase at the eutectic point of 738°C, the sintering temperature decreased from 1150°C to 1000°C, and the morphology phase boundary of BNKT–xZnOn ceramics can be clarified by two separated peaks at (002)T and (200)T of 2θ in the x-ray diffraction (XRD) patterns. The improvement of ferroelectric properties has been obtained for BNZT–0.2 wt.% ZnOn ceramics by the increase of remanent polarization up to 20.4 μC/cm2 and a decrease of electric coercive field down to 14.2 kV/cm. The piezoelectric parameters of the ceramic included a piezoelectric charge constant of d 31 = 78 pC/N; electromechanical coupling factors k p = 0.31 and k t = 0.34, larger than the values of 42 pC/N, 0.12 and 0.13, respectively, were obtained for the BNKT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.O. Leontsev and R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009).

    Article  Google Scholar 

  2. Y. Saito, H. Takao, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamuna, Nature 432, 84 (2004).

    Article  Google Scholar 

  3. C.F. Buhrer, J. Chem. Phys. 36, 798 (1962).

    Article  Google Scholar 

  4. M. Zhu, L. Hou, Y. Hou, J. Liu, H. Wang, and H. Yan, Mater. Chem. Phys. 99, 329 (2006).

    Article  Google Scholar 

  5. M. Izumi, K. Yamamoto, M. Suzuki, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 93, 242903 (2008).

    Article  Google Scholar 

  6. N.T. Tho, A. Inoue, M. Noda, and M. Okuyama, IEEE Trans. Ultrason. Ferroelectr. Freq.␣Control 54, 2603 (2007).

    Article  Google Scholar 

  7. N.T. Tho and L.D. Vuong, Wulfenia J. 22, 250 (2015).

    Google Scholar 

  8. L.D. Vuong and N.T. Tho, Int. J. Mater. Res. 108, 1 (2017).

    Article  Google Scholar 

  9. C.H. Wang, Adv. Mater. Res. 239–242, 3240 (2011).

    Article  Google Scholar 

  10. Y. Yuan, S. Zhang, and X. Zhou, J. Mater. Sci. Mater. Electron. 20, 1090 (2009).

    Article  Google Scholar 

  11. B. Wang, L. Luo, F. Ni, P. Du, W. Li, and H. Chen, J. Alloys Compd. 526, 79 (2013).

    Article  Google Scholar 

  12. E. Taghaddos, M. Hejazi, and A. Safari, J. Am. Ceram. Soc. 97, 1756 (2014).

    Article  Google Scholar 

  13. N.D. Quan, N.V. Quyet, L.H. Bac, D.V. Thiet, V.N. Hung, and D.D. Dung, J. Phys. Chem. Solids 77, 62 (2015).

    Article  Google Scholar 

  14. N.V. Quyet, L.H. Bac, D. Odkhuu, and D.D. Dung, J. Phys. Chem. Solids 85, 148 (2015).

    Article  Google Scholar 

  15. D.T. Hinh, M.R. Bafandeh, J.-K. Kang, C.-H. Hong, W. Joc, and J.-S. Lee, Ceram. Int. 41, 458 (2015).

    Article  Google Scholar 

  16. A. Ullah, C.W. Ahn, A. Hussain, and I.W. Kim, Curr. Appl. Phys. 10, 1367 (2010).

    Article  Google Scholar 

  17. N. TruongTho, T. Kanashima, and M. Okuyama, Mater. Res. Soc. Symp. Proc. 1199, 1199-F06-19 (2009).

    Google Scholar 

  18. N.T. Tho, T. Kanashima, and M. Okuyama, Jpn. J. Appl. Phys. 49, 095803 (2010).

    Article  Google Scholar 

  19. N.T. Tho, T. Kanashima, M. Sohgawa, D. Ricinschi, M. Noda, and M. Okuyama, J. Appl. Phys. 49, 09MB05 (2010).

    Article  Google Scholar 

  20. N. Truong-Tho and N.T. Nghi-Nhan, J. Electron. Mater. 46, 3585 (2017).

    Article  Google Scholar 

  21. L. Hai-Bo, C. Mao-Sheng, Y. Jie, W. Da-Wei, Z. Quan-Liang, and W. Fu-Chi, Chin. Phys. B 17, 4323 (2008).

    Article  Google Scholar 

  22. R. Hayati and A. Barzegar, Mater. Sci. Eng. B 172, 121 (2010).

    Article  Google Scholar 

  23. C. Wichasilp, S. Introng, W. Maithong, N. Kruea-In, and C. Kruea-In, Adv. Mater. Res. 979, 232 (2014).

    Article  Google Scholar 

  24. L.D. Vuong, P.D. Gio, N.D. Tung Luan, and H. Cheolkeun, Wulfenia J. 22, 216 (2015).

    Google Scholar 

  25. IRE Standards on Piezoelectric, IEEE standard 179-1961 (New York: Institute of Electrical and Electronic Engineers, 1961).

    Google Scholar 

  26. J.P. Guha, S. Kunej, and D. Suvorov, J. Mater. Sci. 39, 911 (2004).

    Article  Google Scholar 

  27. J. Kim, T. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 1541 (1989).

    Article  Google Scholar 

  28. R.M. German, P. Suri, and S.J. Park, J. Mater. Sci. 44, 1 (2009).

    Article  Google Scholar 

  29. D.A. Tuan, V.T. Tung, T.V. Chuong, and L.V. Hong, Int. J. Mod. Phys. B 31, 1650258 (2017).

    Article  Google Scholar 

  30. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  Google Scholar 

  31. C. Barry Carter and M. Grant Norton, Ceramic materials: science and engineering (New York: Springer, 2013), p. 59.

    Book  Google Scholar 

  32. V.M. Goldschumidt and S.N. Videnskaps-Akad Oslo, I. Mat.-Nat. KI., (1926), p. 8.

  33. Y. Xu, Ferroelectric materials and their applications (Amsterdam: Elservier, 1991).

    Google Scholar 

  34. K. Uchino, J. Ceram. Soc. Jpn. 99, 829 (1991).

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2015.66.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Dai Vuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, L.D., Truong-Tho, N. Effect of ZnO Nanoparticles on the Sintering Behavior and Physical Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics. J. Electron. Mater. 46, 6395–6402 (2017). https://doi.org/10.1007/s11664-017-5665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5665-8

Keywords

Navigation