Skip to main content
Log in

Enhancement of piezoelectricity in polymer PVDF based on molecular chain structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a novel polarization method was proposed, in which a partially isolated C=C double bond was constructed in the PVDF molecular chain by designing a step-by-step polarization process. The dielectric and piezoelectric properties of PVDF films were studied. The results show that the piezoelectric coefficient d33 is significantly improved. Specifically, the d33 increases from − 6.5 pC/N for traditional polarization to − 13.5 pC/N by 107%. The microstructures were investigated by Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy, and it is confirmed that the dehydrogenation defluorination reaction was effectively induced by the polarization method, and the C=C double bond is constructed. It is also observed that the introduction of C=C bond increases the content of polar β phase, and consequently its piezoelectric properties of PVDF films. This method improves the piezoelectric performance while maintaining the original excellent performance, and further broadens the application scenarios of PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zhao, F. Li, Z. Wang, P. Dong, G. Xia, K. Wang, J. Mater. Sci. 32(11), 14715–14727 (2021). https://doi.org/10.1007/s10854-021-06027-w

    Article  CAS  Google Scholar 

  2. X. Chen, X. Han, Q.D. Shen, Adv. Electron. Mater. 3, 1600460 (2017). https://doi.org/10.1002/aelm.201600460

    Article  CAS  Google Scholar 

  3. K. Roy, S.K. Ghosh, A. Sultana, S. Garain, M. Xie, C.R. Bowen, K. Henkel, D. Schmeiβer, D. Mandal, A.C.S. Appl, Nano Mater. 2, 2013 (2019). https://doi.org/10.1021/acsanm.9b00033

    Article  CAS  Google Scholar 

  4. F. Mokhtari, G.M. Spinks, C. Fay, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Adv. Mater. Technol. 5, 1900900 (2020). https://doi.org/10.1002/admt.201900900

    Article  CAS  Google Scholar 

  5. S. You, H. Shi, J. Wu, L. Shan, S. Guo, S. Dong, J. Appl. Phys. 120, 234103 (2016). https://doi.org/10.1063/1.4972478

    Article  CAS  Google Scholar 

  6. Y. Yu, H. Sun, H. Orbay, F. Chen, C.G. England, W. Cai, X. Wang, Nano Energy 27, 275 (2016). https://doi.org/10.1016/j.nanoen.2016.07.015

    Article  CAS  Google Scholar 

  7. X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, H. Zhang, Nano Energy 22, 453 (2016). https://doi.org/10.1016/j.nanoen.2016.02.037

    Article  CAS  Google Scholar 

  8. H. Zhang, X.S. Zhang, X. Cheng, Y. Liu, M. Han, X. Xue, S. Wang, F. Yang, S.A. Smitha, H. Zhang, Z. Xu, Nano Energy 12, 296 (2015). https://doi.org/10.1016/j.nanoen.2014.12.038

    Article  CAS  Google Scholar 

  9. S. Ahn, Y. Cho, S. Park, J. Kim, J. Sun, D. Ahn, M. Lee, D. Kim, T. Kim, H. Shin, J.-J. Park, Nano Energy 74, 104932 (2020). https://doi.org/10.1016/j.nanoen.2019.04.083

    Article  CAS  Google Scholar 

  10. T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, L. Zhang, W. Deng, W. Yang, Nano Energy 72, 104706 (2020). https://doi.org/10.1016/j.nanoen.2020.104706

    Article  Google Scholar 

  11. P. Saxena, P. Shukla, Adv. Compos. Hybrid Mater. 4, 8 (2021). https://doi.org/10.1007/s42114-021-00217-0

    Article  CAS  Google Scholar 

  12. G. Kang, Y. Cao, J. Membr. Sci. 463, 145 (2014). https://doi.org/10.1016/j.memsci.2014.03.055

    Article  CAS  Google Scholar 

  13. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Progress Polym. Sci. 39, 683 (2014). https://doi.org/10.1016/j.progsurf.2014.08.002

    Article  CAS  Google Scholar 

  14. W. Ma, H. Yuan, X. Wang, Membranes 4, 243 (2014). https://doi.org/10.3390/membranes4020243

    Article  Google Scholar 

  15. D. Chen, K. Chen, K. Brown, A. Hang, J.X.J. Zhang, Appl. Phys. Lett. 110, 153902 (2017). https://doi.org/10.1063/1.4980130

    Article  CAS  Google Scholar 

  16. N. Hu, D. Chen, D. Wang, S. Huang, I. Trase, H.M. Grover, X. Yu, J.X.J. Zhang, Z. Chen, Phys. Rev. Appl. 9, 021002 (2018). https://doi.org/10.1103/PhysRevApplied.9.021002

    Article  CAS  Google Scholar 

  17. Y. Ting, Suprapto, C. Chiu, Hariyanto Gunawan, J. Appl. Polym. Sci. 135, 46677 (2018). https://doi.org/10.1002/app.46677

  18. S. Jiang, H. Wan, H. Liu, Y. Zeng, J. Liu, Y. Wu, G. Zhang, Appl. Phys. Lett. 109, 102904 (2016). https://doi.org/10.1063/1.4962489

    Article  CAS  Google Scholar 

  19. K.S. Chary, V. Kumar, C.D. Prasad, H.S. Panda, J. Aust. Ceram. Soc. 56, 1107 (2020). https://doi.org/10.1007/s41779-020-00458-0

    Article  CAS  Google Scholar 

  20. B. Neese, Y. Wang, B. Chu, K. Ren, S. Liu, Q.M. Zhang, H. Cheng, J. West, Appl. Phys. Lett. 90, 242917 (2007). https://doi.org/10.1063/1.2748076

    Article  CAS  Google Scholar 

  21. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L. Chen, T.N. Jackson, Q. Wang, Nature 523, 576 (2015). https://doi.org/10.1038/nature14647

    Article  CAS  Google Scholar 

  22. K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013). https://doi.org/10.1063/1.4776740

    Article  CAS  Google Scholar 

  23. Z. Cui, J. Wu, J. Chen, X. Wang, J. Si, Q. Wang, J. Mater. Sci. 56, 12506–12523 (2021). https://doi.org/10.1007/s10853-021-05995-y

    Article  CAS  Google Scholar 

  24. B. Neese, Y. Wang, B. Chu, K. Ren, S. Liu, Q.M. Zhang, C. Huang, J. West, Appl. Phys. Lett. 90, 242917 (2007). https://doi.org/10.1063/1.2748076

    Article  CAS  Google Scholar 

  25. S. Jia, J. Long, J. Li, S. Yang, K. Huang, N. Yang, Y. Liang, J. Xiao, J. Mater. Sci. 55, 14907 (2020). https://doi.org/10.1007/s10853-020-05051-1

    Article  CAS  Google Scholar 

  26. S. Ahmed, F.R. Jones, J. Mater. Sci. 25, 4933 (1990). https://doi.org/10.1007/BF00580110

    Article  CAS  Google Scholar 

  27. A. Mayeen, M.S. Kala, S. Sunija, D. Rouxel, R.N. Bhowmik, S. Thomas, N. Kalarikkal, J. Alloys Compd. 837, 155492 (2020). https://doi.org/10.1016/j.jallcom.2020.155492

    Article  CAS  Google Scholar 

  28. G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek, D.Y. Park, D.H. Kim, J.H. Park, C.K. Jeong, K.-I. Park, J.-J. Choi, D.K. Kim, J. Ryu, K.J. Lee, Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237

    Article  CAS  Google Scholar 

  29. X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang, B. Lu, Small 13, 1604245 (2017). https://doi.org/10.1002/smll.201604245

    Article  CAS  Google Scholar 

  30. M. Choi, G. Murillo, S. Hwang, J.W. Kim, J.H. Jung, C.-Y. Chen, M. Lee, Nano Energy 33, 462 (2017). https://doi.org/10.1016/j.nanoen.2017.01.062

    Article  CAS  Google Scholar 

  31. A. Salimi, Y.A. Yousef, Analysis method. Polym. Testing 22, 699 (2003). https://doi.org/10.1016/S0142-9418(03)00003-5

    Article  CAS  Google Scholar 

  32. K. Matsushige, K. Nagata, S. Imada, T. Takemura, Polymer 21, 1391 (1980). https://doi.org/10.1016/0032-3861(80)90138-X

    Article  CAS  Google Scholar 

  33. H. Ye, L. Yang, W. Shao, S. Sun, L. Zhen, RSC Adv. 3, 23730 (2013). https://doi.org/10.1039/c3ra43966f

    Article  CAS  Google Scholar 

  34. E.A. Viola, W.B. Euler, Polym. Phys. 49, 1493 (2011). https://doi.org/10.1002/polb.22348

    Article  CAS  Google Scholar 

  35. W. Eisenmenger, H. Schmidt, B. Dehlen, Braz. J. Phys. 29(2), 295 (1999). https://doi.org/10.1590/S0103-97331999000200011)

    Article  CAS  Google Scholar 

  36. X. Hu, M. You, N. Yi, X. Zhang, Y. Xiang, Front. Energy Res. 10, 381 (2021). https://doi.org/10.3389/fenrg.2021.621540

    Article  Google Scholar 

  37. Y. Ye, T. Guo, Y. Jiang, W. Li, Chin. J. Mater. Res. 25, 403 (2011). https://doi.org/10.1016/B978-0-444-53599-3.10005-8

    Article  CAS  Google Scholar 

  38. M.M.D. Ramos, H.M.G. Correia, S. Lanceros-Mendez, Comput. Mater. Sci. 33, 230 (2005). https://doi.org/10.1016/j.commatsci.2004.12.041

    Article  CAS  Google Scholar 

  39. S. Yun, H. Luo, Y. Gao, J. Mater. Chem. A 3, 3390 (2015). https://doi.org/10.1039/c4ta05271d

    Article  CAS  Google Scholar 

  40. F. Le Goupil, K. Kallitsis, S. Tencé-Girault, N. Pouriamanesh, C. Brochon, E. Cloutet, T. Soulestin, F.D.D. Santos, N. Stingelin, G. Hadziioannou, Adv. Funct. Mater. 31, 2007043 (2021). https://doi.org/10.1002/adfm.202007043

    Article  CAS  Google Scholar 

  41. V.S. Yadav, D.K. Sahu, Y. Singh, M. Kumar, D.C. Dhubkarya, AIP Conf. Proc. 1285, 267 (2010). https://doi.org/10.1063/1.3510553

    Article  CAS  Google Scholar 

  42. S. Jana, S. Garain, S. Sen, D. Mandal, Phys. Chem. Chem. Phys. 17, 17429 (2015). https://doi.org/10.1039/c5cp01820j

    Article  CAS  Google Scholar 

  43. J.I. Scheinbeim, C.H. Yoon, K.D. Pae, B.A. Newman, J. Polym. Sci. Polym. Phys. (1980). https://doi.org/10.1002/pol.1980.180181111

    Article  Google Scholar 

  44. Z. Tan, C. Fu, Y. Gao, J. Qian, W. Li, X. Wu, H. Chu, C. Chen, W. Nie, X. Ran, Radiat. Phys. Chem. 153, 258 (2018). https://doi.org/10.1016/j.radphyschem.2018.06.051

    Article  CAS  Google Scholar 

  45. A. Le Moel, J. Duraud, E. Balanzat. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 18, 59 (1986) https://doi.org/10.1016/S0168-583X(86)80012-X

Download references

Acknowledgements

The authors acknowledge the supports from the National Natural Science Foundation of China (51972125) and HUST International Cooperation and Exchange Project, Double First Class Program of China (5001182055). The authors also acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology.

Funding

This study was funded by National Natural Science Foundation of China (51972125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Lin, Y., Zou, K. et al. Enhancement of piezoelectricity in polymer PVDF based on molecular chain structure. J Mater Sci: Mater Electron 32, 28708–28717 (2021). https://doi.org/10.1007/s10854-021-07250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07250-1

Navigation