Skip to main content
Log in

Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As one of the components of the lithium ion batteries (LIBs), the separator plays a vital part in the safety and electrochemical performance. In this work, a ZrO2-ceramic-coated polyvinylidene fluoride (PVDF) nanofibrous separator for LIBs was successfully prepared by electrospinning, subsequent dopamine hydrophilic modification and biomimetic mineralization process. These preparation processes were environmentally friendly and simple. The ZrO2-ceramic coating endows the separator with outstanding electrolyte wettability and thermal stability. To be specific, the separator exhibits higher ionic conductivity (2.261 mS cm−1), high porosity (85.1%) and favorable electrolyte wettability (352%), and lower interfacial impedance (220 Ω). Compared with commercial polyolefin separator and PVDF nanofibrous separator, the ZrO2-ceramic-coated PVDF nanofibrous separator exhibits excellent rate performance and well cyclic stability. Most importantly the ZrO2–PDA/PEI–PVDF separator can still maintain a complete structure even at a high temperature of 300 °C. Compared with commercial separators, it greatly improves the safety of lithium ion batteries at high temperature. Therefore, this separator has far-reaching prospects for improving lithium ion safety and cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Rodrigues M-TF, BabuG Gullapalli H, Kalaga K, Sayed FN, Kato K, Joyner J, Ajayan PM (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 2:17108

    CAS  Google Scholar 

  2. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    CAS  Google Scholar 

  3. Kim T, Park J, Chang SK, Choi S, Ji HR, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872

    CAS  Google Scholar 

  4. Lu L, Han X, Li J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    CAS  Google Scholar 

  5. Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414

    CAS  Google Scholar 

  6. Jansen AN, Kahaian AJ, Kepler KD, NelsonPA Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902–905

    Google Scholar 

  7. Lee HM, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    CAS  Google Scholar 

  8. Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462

    CAS  Google Scholar 

  9. Huang X, Hitt J (2013) Lithium-ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168

    Google Scholar 

  10. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    CAS  Google Scholar 

  11. Feng G, Li Z, Mi L (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183

    CAS  Google Scholar 

  12. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    CAS  Google Scholar 

  13. Shin W-K, Kim D-W (2013) High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J Power Sources 226:54–60

    CAS  Google Scholar 

  14. Shi JL, Xia Y, Yuan ZZ, Hu H, Li XF, Zhang HM, Liu ZP (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255

    CAS  Google Scholar 

  15. Zhai Y, Xiao K, Yu J, Ding B (2016) Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability. J Power Sources 325:292–300

    CAS  Google Scholar 

  16. Ye W, Zhu J, Liao X, Jiang S, Li Y, Fang H, Hou H (2015) Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 299:417–424

    CAS  Google Scholar 

  17. Lee J, Park I, Lee H, Shin D (2012) Effects of embossing structure on the performance of intermediate-temperature solid oxide fuel cells with gadolinium-doped ceria electrolyte. J Power Sources 212:35–42

    CAS  Google Scholar 

  18. Ko Y, Yoo H, Kim J (2014) Curable polymeric binder–ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries. Rsc Adv 4:19229–19233

    CAS  Google Scholar 

  19. Lee JY, Yong ML, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315

    CAS  Google Scholar 

  20. Yang HC, Hou J, Chen V, Xu ZK (2016) Surface and interface engineering for organic–inorganic composite membranes. J Mater Chem A 4(25):9716–9729

    CAS  Google Scholar 

  21. Shi C, Dai J, Shen X et al (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3, particles for lithium-ion batteries. J Membr Sci 517:91–99

    CAS  Google Scholar 

  22. Yang P, Zhang P, Shi C, Chen L, Dai J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155

    CAS  Google Scholar 

  23. Choi SW, Jo SM, Lee WS, Kim Y (2010) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2032

    Google Scholar 

  24. Wu D, Deng L, Sun Y, The KS, Shi C (2017) A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. Rsc Adv 7:24410–24416

    Google Scholar 

  25. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    CAS  Google Scholar 

  26. Yang HC, Luo J, Lv Y et al (2015) Surface engineering of polymer membranes via mussel-inspired chemistry. J Membr Sci 483:42–59

    CAS  Google Scholar 

  27. Lee H, Rho J (2009) Messersmith, facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434

    CAS  Google Scholar 

  28. Lee Y, Ryou MH, Seo M, Choi JW, Yong ML (2013) Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries. Electrochim Acta 113:433–438

    CAS  Google Scholar 

  29. Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070

    CAS  Google Scholar 

  30. Mi Y, Wang J, Yang Z, Wang Z, Wang H (2014) A simple one-step solution deposition process for constructing high-performance amorphous zirconium oxide thin film. Rsc Adv 4:6060–6067

    CAS  Google Scholar 

  31. Yang HC, Pi JK, Liao KJ, Huang H, Wu QY (2014) Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl Mater Interfaces 6:12566–12572

    CAS  Google Scholar 

  32. Kang SM, Ryou MH, Choi JW, Lee H (2012) Mussel- and diatom-inspired silica coating on separators yields improved power and safety in li-ion batteries. Chem Mater 24:3481–3485

    CAS  Google Scholar 

  33. Lee SH, Kim J, Kim BH, Yoon SK, Cho KY (2019) Delamination-free multifunctional separator for long-term stability of lithium-ion batteries. Small. https://doi.org/10.1002/smll.201804980

    Article  Google Scholar 

  34. Ma Y, Hu JP, Wang ZT, Zhu YQ, Ma XL, Cao CB (2020) Poly(vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties. J Power Sources. https://doi.org/10.1016/j.jpowsour.2020.227759

    Article  Google Scholar 

  35. Shi C, Dai JH, Huang SH, Li C, Shen X, Zhang P, Wu DZ, Sun DH, Zhao JB (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium ion batteries. J Membr Sci 518:168–177

    CAS  Google Scholar 

  36. Mikhailov MM, Vlasov VA (2016) Effect of of SiO2 nanoparticles sizes on the optical properties and radiation resistance of powder mixtures ZrO2 with micron sizes. Radiat Meas 91:15–20

    CAS  Google Scholar 

  37. Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30

    CAS  Google Scholar 

  38. Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 9:25970–25975

    CAS  Google Scholar 

  39. Esho I, Shah K, Jain A (2018) Measurements and modeling to determine the critical temperature for preventing thermal runaway in Li-ion cells. Appl Therm Eng 145:287–294

    CAS  Google Scholar 

  40. Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98

    CAS  Google Scholar 

  41. Zhai Y, Xiao K, Yu J et al (2015) Thermostable and nonflammable silica–polyetherimide–poly-urethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3:10551–10558

    CAS  Google Scholar 

  42. Zhan XL, Zhang JW, Liu MZ, Lu JG, Zhang QH, Chen FQ (2019) Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Appl Energy Mater 2:1685–1694

    CAS  Google Scholar 

  43. Zhang W, Xiang YK, Jamil MI, Lu JG, Zhang QH, Zhan XL, Chen FQ (2018) Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J Membr Sci 564:753–761

    CAS  Google Scholar 

  44. Ren CS, Liu MZ, Zhang JW, Zhang QH, Zhan XL, Chen FQ (2018) Solid-state singleion conducting comblike siloxane copolymer electrolyte with improvedconductivity and electrochemical window for lithium batteries. J Appl Polym Sci 135:9

    Google Scholar 

  45. Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L (2015) Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator for lithium ion power batteries. Electrochim Acta 159:61–65

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Shanghai Municipal Education Commission’s Industry-University-Research Program (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojin Jia.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Long, J., Li, J. et al. Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries. J Mater Sci 55, 14907–14921 (2020). https://doi.org/10.1007/s10853-020-05051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05051-1

Navigation