Skip to main content
Log in

Effect of Ni-doping on the structural, magnetic, and electronic properties of La0.2Sr0.8MnO3 perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of light Ni-substituted Manganese on the physical properties of La0.2Sr0.8MnO3 perovskite prepared by the standard solid-state reaction method was investigated. Field Emission Scanning Electron microscopy confirms the particle size composition and grain boundaries in these samples. Moreover, the presence of all the chemical elements with atomic ratios coordinating with the general formula La0.2Sr0.8Mn1−xNixO3 (x = 0.0 and 0.1) was confirmed by Energy-dispersive X-ray spectroscopy. X-ray diffractions analyses indicate that both compounds have a rhombohedral structure with an R3C space group, for which the cell parameter increases with nickel addition. A competition between ferromagnetic and antiferromagnetic moments is evidenced at room temperature for both compounds by measuring the magnetization versus magnetic field. Saturation magnetization and the corresponding residual magnetization decrease with the Ni substitution; however, the coercive field increases. These changes are correlated with those evidenced by structural properties. Conductance measurements as a function of frequency from 102 Hz to 5 MHz are analyzed in the temperature range 300 K–420 K in order to evidence the conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.W. Martin, Y.-H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 68, 89 (2010). https://doi.org/10.1016/j.mser.2010.03.001

    Article  CAS  Google Scholar 

  2. M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, G.H. Kwe, Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore TI2Mn2O7. Science 273, 81 (1996). https://doi.org/10.1126/science.273.5271.81

    Article  CAS  Google Scholar 

  3. M. Baibich, J. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. J. Phys. Rev. Lett. 61, 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472

    Article  CAS  Google Scholar 

  4. L. Balcells, R. Enrich, J. Mora, A. Calleja, J. Fontcuberta, Manganese perovskites: thick-film based position sensors fabrication. Appl. Phys. Lett. 69, 1486 (1996). https://doi.org/10.1063/1.116916

    Article  CAS  Google Scholar 

  5. S. Jin, T. Tiefel, M. McCormack, R. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold, change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413

    Article  CAS  Google Scholar 

  6. W. Xia, Z. Pei, K. Leng, X. Zhu, Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Res. Lett. 15, 9 (2020). https://doi.org/10.1186/s11671-019-3243-0

    Article  CAS  Google Scholar 

  7. M. Egilmez, K. Chow, J. Jung, Anisotropic magnetoresistance in perovskite manganites. Mod. Phys. Lett. B. 25, 697 (2011). https://doi.org/10.1142/S0217984911026176

    Article  CAS  Google Scholar 

  8. G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, Z. Luo, Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram Int 44, 21982 (2018). https://doi.org/10.1016/j.ceramint.2018.08.313

    Article  CAS  Google Scholar 

  9. R. Bindu, K. Maiti, R. Rawat, S. Khalid, Electronic and structural transition in La0.2Sr0.8MnO3. Appl. Phys. Lett. 92, 121906 (2008). https://doi.org/10.1063/1.2898885

    Article  CAS  Google Scholar 

  10. C. Doroftei, L. Leontie, Nanocrystalline SrMnO3 perovskite prepared by sol–gel self-combustion method for sensor applications. J. Sol-Gel Sci. Technol 97, 146 (2021). https://doi.org/10.1007/s10971-020-05419-4

    Article  CAS  Google Scholar 

  11. A. Kumar, M. Kumar, R.P. Singh, P.K. Singh, Opto-electronic, magnetic, thermodynamic and thermoelectric properties of cubic perovskite SrMnO3: a first principle based spin polarized calculation. Solid State Commun. 324, 114139 (2021). https://doi.org/10.1016/j.ssc.2020.114139

    Article  CAS  Google Scholar 

  12. G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337 (1950). https://doi.org/10.1016/0031-8914(50)90033-4

    Article  CAS  Google Scholar 

  13. J. Zhao, C. Liu, J. Li, R. Wu, J. Wang, H. Qian, H. Guo, J. Li, K. Ibrahim, Oxygen vacancy induced electronic structure variation in the La0.2Sr0.8MnO3 thin film. AIP Adv. 9, 055208 (2019). https://doi.org/10.1063/1.5088738

    Article  CAS  Google Scholar 

  14. Z. Wang, Y. You, J. Yuan, Y.X. Yin, Y.T. Li, S. Xin, D. Zhang, Nickel-doped La0.8Sr0.2Mn1-xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 8, 6520 (2016). https://doi.org/10.1021/acsami.6b00296

    Article  CAS  Google Scholar 

  15. E. Oumezzine, S. Hcini, E.-K. Hlil, E. Dhahri, M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1-xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method. J. Alloy. Compd. 615, 553 (2014). https://doi.org/10.1016/j.jallcom.2014.07.001

    Article  CAS  Google Scholar 

  16. C.P. Reshmi, S.S. Pillai, K.G. Suresh, M.R. Va, Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3. Solid State Sci. 19, 130 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.02.019Ge

    Article  CAS  Google Scholar 

  17. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Education Limited, London, Pearson, 2014), pp. 102–104

    Google Scholar 

  18. A.A.S. Akl, A.S. Hassanien, Microstructure and crystal imperfections of nanosized CdSxSe1-x thermally evaporated thin films. Superlatt Microstr. 85, 67 (2015). https://doi.org/10.1016/j.spmi.2015.05.011

    Article  CAS  Google Scholar 

  19. Z.H. Wang, J.W. Cai, B.G. Shen, X. Chen, W.S. Zhan, Exchange interaction, spin cluster and transport behaviour in perovskites La0.67Sr0.33(Mn1-xNix)O3 (x ≤ 0.2). J. Phys. Condens. Matter. 12, 601 (2000). https://doi.org/10.1088/0953-8984/12/5/308

    Article  CAS  Google Scholar 

  20. S. Kuharuangrong, Effects of Ni on the electrical conductivity and microstructure of La0.82Sr0.16MnO3. Ceram. Int. 30, 273 (2004). https://doi.org/10.1016/S0272-8842(03)00099-3

    Article  CAS  Google Scholar 

  21. T. Ishihara, J.A. Kilner, M. Honda, Y. Takita, Oxygen surface exchange and diffusion in the new perovskite oxide ion conductor LaGaO3. J. Am. Chem. Soc. 119, 2747 (1997). https://doi.org/10.1021/ja964128l

    Article  CAS  Google Scholar 

  22. S. Pala, E. Bose, B.K. Chaudhuri, H.D. Yang, S. Neeleshwar, Y.Y. Chen, Effect of Ni doping in rare-earth manganite La0.7Pb0.3Mn1-xNixO3 (x=0.0–0.5). J. Magn. Magn. Mater. 293, 872 (2005). https://doi.org/10.1016/j.jmmm.2004.12.005

    Article  CAS  Google Scholar 

  23. A. Hammouche, E.J.L. Schouler, M. Henault, Electrical and thermal properties of Sr doped lanthanum manganites. Solid State Ion. (1988). https://doi.org/10.1016/0167-2738(88)90358-X

    Article  Google Scholar 

  24. A.A. Akl, S.A. Mahmoud, S.M. Al-Shomar, A.S. Hassanien, Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 74, 183 (2018). https://doi.org/10.1016/j.mssp.2017.10.007

    Article  CAS  Google Scholar 

  25. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol-gel method. Ceram. Int. 45, 16458 (2019). https://doi.org/10.1016/j.ceramint.2019.05.177

    Article  CAS  Google Scholar 

  26. F. Gaâbel, M. Khlif, N. Hamdaoui, L. Beji, K. Taibi, J. Dhahri, Microstructural, structural and dielectric analysis of Ni-doped CaCu3Ti4O12 ceramic with low dielectric loss. J. Mater. Sci. Mater. Electron. 30, 14823 (2019). https://doi.org/10.1007/s10854-019-01886-w

    Article  CAS  Google Scholar 

  27. S.M. Salili, A. Ataie, M.R. Barati, Z. Sadighi, Characterization of mechano-thermally synthesized Curie temperature-adjusted La0.8Sr0.2MnO3 nanoparticles coated with (3-aminopropyl) triethoxysilane. Mater. Charact. 106, 78 (2015). https://doi.org/10.1016/j.matchar.2015.05.025

    Article  CAS  Google Scholar 

  28. A. Peterlin, Molecular model of drawing polyethylene and polypropylene, Molecular model of drawing polyethylene and polypropylene. J. Mater Sci. 6, 490 (1971). https://doi.org/10.1007/BF00550305

    Article  CAS  Google Scholar 

  29. P.B. Bowden, R.J. Young, Deformation mechanisms in crystalline polymers. J. Mater Sci. 9, 2034 (1974). https://doi.org/10.1007/BF00540553

    Article  CAS  Google Scholar 

  30. A. Silambarasu, A. Manikandan, K. Balakrishnan, Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nanocatalysts. J. Supercond. Nov. Magn. 30, 2631 (2017). https://doi.org/10.1007/s10948-017-4061-1

    Article  CAS  Google Scholar 

  31. A. Manikandan, E. Hema, M. Durka, K. Seevakan, T. Alagesan, S.A. Antony, Room temperature ferromagnetism of magnetically recyclable photocatalyst of Cu1−xMnxFe2O4-TiO2 (0.0≤x ≤0.5) nanocomposites. J. Supercond. Nov. Magn. 28, 1783 (2015). https://doi.org/10.1007/s10948-014-2945-x

    Article  CAS  Google Scholar 

  32. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, F. Goga, G. Borodi, L.B. Tudoran, Influence of polyol structure and molecular weight on the shape and properties of Ni0.5Co0.5Fe2O4 nanoparticles obtained by sol-gel synthesis. Ceram. Int. 45, 7458 (2019). https://doi.org/10.1016/j.ceramint.2019.01.037

    Article  CAS  Google Scholar 

  33. J.M. Haudin, in: Plastic Deformation of Amorphous and Semi-crystalline Materials, ed. by B. Escaig and C. G'Sell (Les Editions de Physique, Les Ulis, France, 1982), p. 291–311.

  34. L. Lin, A.S. Argon, Structure and plastic deformation of polyethylene. J. Mater. Sci. 29, 294 (1994). https://doi.org/10.1007/BF01162485

    Article  CAS  Google Scholar 

  35. J. Jia, D. Raabe. Crystallinity and crystallographic texture in isotactic polypropylene during deformation and heating. (ArXivLabs, 2008), http://arxiv.org/abs/0811.2412. Accessed 14 Nov 2008.

  36. H. Klug, L. Alexander, X-Ray Diffraction Procedures for Poly-Crystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), pp. 136–142

    Google Scholar 

  37. A. Weidinger, P.H. Hermans, On the determination of the crystalline fraction of isotactic polypropylene from x-ray diffraction. Macromol. Chem. Phys. 50, 98 (1961). https://doi.org/10.1002/macp.1961.020500107

    Article  CAS  Google Scholar 

  38. A. Alaa, Akl, Microstructure and electrical properties of iron oxide thin films deposited by spray pyrolysis. Appl. Surf. Sci. 221, 319 (2004). https://doi.org/10.1016/S0169-4332(03)00951-6

    Article  CAS  Google Scholar 

  39. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006). https://doi.org/10.1021/cm052256f

    Article  CAS  Google Scholar 

  40. Z. Zhang, C. Zhong, Y. Deng, L. Liu, Y. Wu, W. Hu, The manufacture of porous cuprous oxide film with photocatalytic properties via an electrochemical–chemical combination method. RSC Adv. 3, 6763 (2013). https://doi.org/10.1039/C3RA40855H

    Article  CAS  Google Scholar 

  41. S.M. Al-Shomar, M.A.Y. Barakat, S.A. Mahmoud, A.A. Akl, Microstructure, crystal imperfections and ultrasonic studies of sprayed nanosized Cu2-xSxO and Cu2-yCryO thin films. Dig. J. Nanomater. Biostructures 13, 885 (2018)

    Google Scholar 

  42. S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschlager, G. Homm, P.J. Klar, B.K. Meyer, Copper oxide thin films by chemical vapor deposition: synthesis, characterization and electrical properties. Phys. Status Solidi A 209, 531 (2011). https://doi.org/10.1002/pssa.201127493

    Article  CAS  Google Scholar 

  43. A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X

    Article  CAS  Google Scholar 

  44. A.A.S. Akl, M. Elhadi, Estimation of crystallite size, lattice parameter, internal strain and crystal impurification of nanocrystalline Al3Ni20Bx alloy by Williamson-Hall method. J. of Ovonic Res. 16, 323 (2020)

    Google Scholar 

  45. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  46. H. Song, W. Kim, S.-J. Kwon, Magnetic and electronic properties of transition metal substituted perovskite manganites La0.7Ca0.3Mn0.95X0.05O3 (X=Fe Co, Ni). J. Appl. Phys. 89, 3398 (2001). https://doi.org/10.1063/1.1350417

    Article  CAS  Google Scholar 

  47. O. Toulemonde, F. Suder, A. Barnabe, A. Maignan, C. Martin, B. Raveau, Charge states of transition metal in “Cr, Co and Ni” doped Ln0.5Ca0.5MnO3 CMR manganites. Eur. Phys. J. B 4, 159 (1998). https://doi.org/10.1007/s100510050364

    Article  CAS  Google Scholar 

  48. A.E.-M.A. Mohamed, B. Hernando, A.M. Ahmed, Magnetic, magnetocaloric and thermoelectric properties of nickel doped manganites. J. Alloy. Compd. 692, 381 (2017). https://doi.org/10.1016/j.jallcom.2016.09.050

    Article  CAS  Google Scholar 

  49. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6-xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4). J. Alloy. Compd. 803, 964 (2019). https://doi.org/10.1016/j.jallcom.2019.06.339

    Article  CAS  Google Scholar 

  50. M. Rubinstein, D.J. Gillespie, J.E. Snyder, T.M. Tritt, Effects of Gd Co, and Ni doping in La2/3Ca1/3MnO3: resistivity, thermopower, and paramagnetic resonance. Phys. Rev. B 56, 5412 (1997). https://doi.org/10.1103/PhysRevB.56.5412

    Article  CAS  Google Scholar 

  51. J.W. Feng, L. Hwang, Ferromagnetic cluster behaviors and magnetoresistance in Ni-doped LaSrMnO3 systems. Appl. phys. Lett. 75(1592), 1592–1594 (1999). https://doi.org/10.1063/1.124764

    Article  CAS  Google Scholar 

  52. O. Toulemonde, F. Studer, B. Raveau, Magnetic interactions studies of Co and Ni-doped manganites using soft XMCD. Solid State Commun. 118, 107 (2001). https://doi.org/10.1016/S0038-1098(01)00020-5

    Article  CAS  Google Scholar 

  53. M. Desai, S. Prasad, N. Venkataramani, I. Samajdar, A.K. Nigam, Anomalous variation of coercivity with annealing in nanocrystalline NiZn ferrite films. J. Appl. Phys. 91, 592 (2002). https://doi.org/10.1063/1.1447504

    Article  CAS  Google Scholar 

  54. V.M. Kalita, A.A.F. Lozenko, S.M. Ryabchenko, A.A. Timopheeev, R.A. Trotsenko, Magnetic properties of La0.7Sr0.3MnO3 nanopowders. Low Temp. Phys. 34, 436 (2008). https://doi.org/10.1063/1.2920124

    Article  CAS  Google Scholar 

  55. W. Li, R.W. Schwartz, Ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: grain boundary and domain boundary effects. Appl. Phys. Lett. 89, 242906 (2006). https://doi.org/10.1063/1.2405382

    Article  CAS  Google Scholar 

  56. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  57. K.M. Sangwan, N. Ahlawat, S. Rani, S. Rani, R.S. Kundu, Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315 (2018). https://doi.org/10.1016/j.ceramint.2018.03.039

    Article  CAS  Google Scholar 

  58. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri, Conduction mechanisms study in CaCu2.8Ni0.2Ti4O12 ceramics sintered at different temperatures. J. Alloy. Compd. 828, 154373 (2020). https://doi.org/10.1016/j.jallcom.2020.154373

    Article  CAS  Google Scholar 

  59. M. Sindhu, N. Ahlawat, S. Sanghi, R. Kumari, A. Agarwal, Crystal structure refinement and investigation of electrically heterogeneous microstructure of single phased Sr substituted BaTiO3 Ceramics. J. Alloy. Compd. 575, 109 (2013). https://doi.org/10.1016/j.jallcom.2013.04.026

    Article  CAS  Google Scholar 

  60. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Article  CAS  Google Scholar 

  61. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103 (2018). https://doi.org/10.1039/C8RA00037A

    Article  CAS  Google Scholar 

  62. K.S. Gilroy, W.A. Phillips, An asymmetric double-well potential model for structural relaxation processes in amorphous materials. Philos. Mag. Lett. 43, 735 (1981). https://doi.org/10.1080/01418638108222343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejeh Hamdaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdaoui, N., Tlili, D., Azizian-Kalandaragh, Y. et al. Effect of Ni-doping on the structural, magnetic, and electronic properties of La0.2Sr0.8MnO3 perovskite. J Mater Sci: Mater Electron 32, 26984–26997 (2021). https://doi.org/10.1007/s10854-021-07072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07072-1

Navigation