Skip to main content
Log in

Molecular model of drawing polyethylene and polypropylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Morphological studies of plastic deformation of single crystals, thin layers, and bulk samples together with mechanical, X-ray and infra-red data revealed the existence of three stages in cold drawing of crystalline polymer: the plastic deformation of the original spherulitic structure, the discontinuous transformation of the spherulitic into fibre structure by micronecking, and the plastic deformation of the fibre structure. The initial material, which has low strength and high ductility, consist of stacks of parallel lamellae with few interlamella links. It deforms plastically by stack rotation, sliding of lamellae, phase change and twinning of crystal lattice, chain slip and tilt until the predeformed lamellae reach the position of maximum compliance for fracture by micronecking. The micronecks transform every single lamella into microfibrils of between one and three hundred angstroms in width, consisting of folded chain blocks broken off the lamella primarily by chain slip in the boundary layers between adjacent mosaic blocks. The chains bridging the crack are partially unfolded during the micronecking process. They connect in axial direction the blocks in the microfibril as intrafibrillar tie molecules. The number of microfibrils per cm of crack length increases with molecular weight. The draw ratio of the microfibrils and the axial separation in the microfibril of the originally adjacent crystal blocks increase with the average distance between microfibrils and, hence, decrease with increasing molecular weight. The concentration of micronecks in every stack of lamellae in a thin destruction zone produces a bundle of microfibrils of rather uniform draw ratio. Such a fibril measuring a few thousand angstroms in width includes the interlamella ties of the original sample as interfibrillar tie molecules connecting adjacent microfibrils. The concentration of micronecks also provides the conditions for a nearly adiabatic heating of the generated fibril by the transformation work in the destruction zone. The local temperature rise imparts so much mobility to the chains in the crystal blocks that during subsequent cooling to ambient temperature, the long period becomes adjusted to this temperature. The more or less random distribution of destruction zones in the neck makes the transformation from spherulitic to fibre structure appear to be a gradual process in spite of the discontinuous transformation in the micronecks. The plastic deformation of the new fibre structure can proceed only by longitudinal sliding of microfibrils past each other, a process limited by interfibrillar tie molecules. Hence, high molecular weight samples with many interlamella links exhibit a smaller draw ratio than lower molecular weight material. The three stages are to some extent intermixed in the neck. In the initial neck characterised by a low draw ratio and rather gentle constriction, the transformation into the fibre structure is not complete, so that some of the remains of the original microspherulitic structure are still present in the necked portion. They are destroyed during subsequent drawing which completes the transformation and also deforms the fibre structure. The sharply constricted mature neck, however, yields a high draw ratio which is composed of the draw ratio of microfibrils and of subsequent sliding motion of the microfibrils. The technically important natural draw ratio is the maximum draw ratio obtained with the sample under the conditions of the experiment. It seems to be higher than the draw ratio of the microfibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For older work, see P. H. Geil, “Polymer Single Crystals”, (Interscience Publ., J. Wiley & Sons, New York, 1963) pp. 421–490.

    Google Scholar 

  2. E. W. Fischer and G. F. Schmidt, Angew. Chem. 74 (1962) 551.

    Google Scholar 

  3. A. Peterlin, J. Polymer Sci. C9 (1965) 61; C15 (1967) 427; C18 (1967) 123.

    Google Scholar 

  4. I. L. Hay and A. Keller, Kolloid-Z. & Z. Polymere 204 (1965) 43.

    Google Scholar 

  5. R. S. Stein, Proc. R. A. Welch Foundation Conf.Chem. Res. 10: Polymers, (1967) 207.

    Google Scholar 

  6. R. Bonart, Kolloid-Z. & Z. Polymere 211 (1966) 14.

    Google Scholar 

  7. A. Peterlin, “Man-Made Fibers”, Vol. 1, Ed. by H. F. Mark, S. M. Atlas, and E. Cernia, (Interscience Publ., J. Wiley & Sons, New York, 1967) pp. 283–340.

    Google Scholar 

  8. A. Peterlin, Kolloid-Z. & Z. Polymere 216/217 (1967) 129.

    Google Scholar 

  9. A. Peterlin, Polymer Eng. Sci. 9 (1969) 172.

    Google Scholar 

  10. E. W. Fischer and M. Goddar, J. Polymer Sci. C16 (1969) 4405.

    Google Scholar 

  11. R. S. Stein, Polymer Eng. Sci. 9 (1969) 320.

    Google Scholar 

  12. K. O'Leary and P. H. Geil, J. Macromol. Sci. B1 (1967) 147; B2 (1968) 261.

    Google Scholar 

  13. C. A. Garber and P. H. Geil, Makromol. Chem. 113 (1968) 251.

    Google Scholar 

  14. P. Vincent, Polymer 1 (1960) 7.

    Google Scholar 

  15. A. Keller and M. J. Machin, J. Macromol. Sci. B1 (1967) 41.

    Google Scholar 

  16. K. Katayama, T. Amano, and K. Nakamura, Kolloid-Z. & Z. Polymere 226 (1968) 125.

    Google Scholar 

  17. H. D. Keith and F. J. Padden, Jr., J. Polymer Sci. 41 (1959) 525.

    Google Scholar 

  18. J. M. Andrews and I. M. Ward, J. Mater. Sci. 5 (1970) 411.

    Google Scholar 

  19. G. R. Williamson, B. Wright, and R. N. Haward, J. Appl. Chem. 14 (1964) 131.

    Google Scholar 

  20. G. Meinel and A. Peterlin, European Polymer J., in press.

  21. G. Meinel and A. Peterlin, J. Polymer Sci. A2 9 (1971) 67.

    Google Scholar 

  22. G. Meinel, A. Peterlin, and K. Sakaoku, “Analytical Calorimetry,” Ed. by R. S. Porter and J. F. Johnson, (Penum Press, New York, 1968) p. 15.

    Google Scholar 

  23. G. Meinel and A. Peterlin, J. Polymer Sci. B5 (1967) 613.

    Google Scholar 

  24. R. Hosemann, H. Čačkovič, and W. Wilke, Naturw. 54 (1967) 278.

    Google Scholar 

  25. H. Čačkovič, R. Hosemann, and W. Wilke, Kolloid-Z. & Z. Polymere 234 (1969) 1000.

    Google Scholar 

  26. J. Loboda-Čačkovič, R. Hosemann, and W. Wilke, Kolloid-Z. & Z. Polymere 235 (1969) 1162.

    Google Scholar 

  27. W. Glenz and A. Peterlin, J. Polymer Sci. A2 in press.

  28. E. W. Fischer, H. Goddar, and G. F. Schmidt, J. Polymer Sci. A2 7 (1969) 37.

    Google Scholar 

  29. G. Porod, Kolloid-Z. 124 (1951) 83; Adv. Polymer Sci. 2 (1960) 363.

    Google Scholar 

  30. D. Ya. Tsvankin, Vysokomol. Soed. 6 (1964) 2078, 2083.

    Google Scholar 

  31. H. Hendus, Kolloid-Z. 165 (1959) 32.

    Google Scholar 

  32. R. Corneliussen and A. Peterlin, Makromol. Chem. 105 (1967) 192.

    Google Scholar 

  33. A. Peterlin and R. Corneliussen, J. Polymer Sci. A2 6 (1968) 1273.

    Google Scholar 

  34. A. Peterlin and F. J. Baltá-Calleja, Kolloid-Z. & Z. Polymere, in press.

  35. A. Peterlin and G. Meinel, Makromol. Chem., in press.

  36. R. T. Samuels, J. Polymer Sci. C20 (1967) 253; A2 6 (1968) 1101, 2021.

    Google Scholar 

  37. F. J. Baltá-Calleja and A. Peterlin, J. Mater. Sci. 4 (1969) 722.

    Google Scholar 

  38. A. Peterlin and F. J. Baltá-Calleja, J. Appl. Phys. 40 (1969) 4238.

    Google Scholar 

  39. F. J. Baltá-Calleja and A. Peterlin, J. Macromol. Sci. B4 (1970) 519.

    Google Scholar 

  40. A. Peterlin, J. Polymer Sci. B1 (1963) 279; Polymer 6 (1964) 25.

    Google Scholar 

  41. P. Dreyfus and A. Keller, J. Polymer Sci. B8 (1970) 253.

    Google Scholar 

  42. S. Matsuoka, J. Polymer Sci. 57 (1962) 569.

    Google Scholar 

  43. K. Sakaoku and A. Peterlin, Makromol. Chem. 108 (1967) 234.

    Google Scholar 

  44. K. Sakaoku and A. Peterlin, J. Polymer Sci. A2 9 (1931) in press.

  45. P. H. Geil, J. Polymer Sci. A2 (1964) 3813, 3835.

    Google Scholar 

  46. H. Kiho, A. Peterlin, and P. H. Geil, J. Appl. Phys. 35 (1964) 1599.

    Google Scholar 

  47. P. Ingram, unpublished work.

  48. A. Peterlin, P. Ingram, and H. Kiho, Makromol. Chem. 86 (1965) 294.

    Google Scholar 

  49. P. Ingram, Makromol. Chem. 108 (1967) 281.

    Google Scholar 

  50. A. Siegman and P. H. Geil, J. Macromol. Sci. B4 (1970) 557.

    Google Scholar 

  51. A. Peterlin and K. Sakaoku, “Clean Surfaces” Ed. by G. Goldfinger (M. Dekker, Inc., New York. 1970) p. 1.

    Google Scholar 

  52. N. Kasai and M. Kakudo, J. Polymer Sci. A2 (1964) 1955.

    Google Scholar 

  53. I. L. Hay and A. Keller, J. Mater. Sci. 1 (1966) 41; 2 (1967) 538.

    Google Scholar 

  54. J. J. Point, G. A. Homes, D. Gezovich, and A. Keller, J. Mater. Sci. 4 (1969) 908.

    Google Scholar 

  55. A. Peterlin and K. Sakaoku, J. Appl. Phys. 38 (1967) 4152.

    Google Scholar 

  56. K. Sakaoku and A. Peterlin, Kolloid-Z. & Z. Polymere 212 (1966) 51.

    Google Scholar 

  57. K. Sakaoku and A. Peterlin, J. Macromol. Sci. B1 (1967) 103.

    Google Scholar 

  58. D. C. Prevorsek and A. V. Tobolsky, Text. Res. J. 33 (1963) 795.

    Google Scholar 

  59. W. Glenz and A. Peterlin, J. Macromol. Sci. B4 (1970) 473.

    Google Scholar 

  60. W. Glenz and A. Peterlin, J. Polymer Sci. A2, in press.

  61. R. P. Palmer and A. T. Cobbold, Makromol.Chem. 74 (1964) 174.

    Google Scholar 

  62. A. Peterlin and G. Meinel, J. Polymer Sci. B3 (1966) 1059.

    Google Scholar 

  63. G. Meinel and A. Peterlin, J. Polymer Sci. B5 (1967) 197, 613.

    Google Scholar 

  64. G. Meinel, N. Morosoff, and A. Peterlin, J. Polymer Sci. A2, 8 (1970) 1723.

    Google Scholar 

  65. W. Glenz, N. Morosoff, and A. Peterlin, J. Polymer Sci., B9 (1971) 211.

    Google Scholar 

  66. A. Peterlin and G. Meinel, J. Polymer Sci. B3 (1965) 783; J. Appl. Phys. 36 (1965) 3028; Appl. Polymer Symp. 2 (1966) 85.

    Google Scholar 

  67. E. W. Fischer and G. Hinrichsen, Koloid-Z. & Z. Polymere 213 (1966) 28.

    Google Scholar 

  68. A. Peterlin, J. L. Williams, and V. Stannett, J. Polymer Sci. A2 5 (1967) 957.

    Google Scholar 

  69. J. L. Williams and A. Peterlin, J. Polymer Sci. A2, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlin, A. Molecular model of drawing polyethylene and polypropylene. J Mater Sci 6, 490–508 (1971). https://doi.org/10.1007/BF00550305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550305

Keywords

Navigation