Skip to main content

Advertisement

Log in

Microstructural, structural and dielectric analysis of Ni-doped CaCu3Ti4O12 ceramic with low dielectric loss

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu2.8Ni0.2Ti4O12 ceramics were elaborated using the solid-state reaction technic. The pellets were annealed at 1000 °C for 24 h. The X-ray diffraction (XRD) analysis proves the main phase formation of our sample crystallize in the cubic structure with \(\text{Im} \overline{3}\) space group. The diffuse reflectance analysis allow us to calculate the optical band gap energy which is equal to 3.172 eV. The dielectric properties of our compound were studied using complex impedance spectroscopy showing a lowering in dielectric loss (tan δ = 0.07) at 1 kHz and at room temperature. The impedance studies reveal the presence of temperature dependent dielectric relaxation. Thus, the electrical modulus studies show that the relaxation is associated with grain boundaries effects. The activation energy calculated from the electric modulus spectra, related to the electrical relaxation, is found to be 0.60 eV. This result suggests the hopping mechanism of oxygen vacancies produced at grain boundaries in relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.M. Vijatović, J.D. Bobić, B.D. Stojanović, History and challenges of barium titanate: part II. Sci. Sinter. 40, 235–244 (2008)

    Article  Google Scholar 

  2. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  3. S.F. Matar, M.A. Subramanian, Calculated electronic properties of the mixed perovskite oxides: CaCu3Ti4O12 (T = Ti, Cr, Mn, Ru) within the DFT. Mater. Lett. 58, 746–751 (2004)

    Article  Google Scholar 

  4. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Progress Cryst. Growth Charact. Mater. 60, 15–62 (2014)

    Article  Google Scholar 

  5. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  Google Scholar 

  6. R. Löhnert, R. Schmidt, J. Töpfer, Effect of sintering conditions on microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics. J. Electroceram. 34, 241–248 (2015)

    Article  Google Scholar 

  7. M.J. Abu, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Phase structure, microstructure and broadband dielectric response of Cu nonstoichiometry CaCu3Ti4O12 ceramic. J. Alloys Compd. 683, 579–589 (2016)

    Article  Google Scholar 

  8. S. Kwon, C.-C. Huang, E.A. Patterson, D.P. Cann, E.F. Alberta, S. Kwon, W.S. Hackenberger, D.P. Cann, The effect of Cr2O3, Nb2O5 and ZrO2 doping on the dielectric properties of CaCu3Ti4O12. Mater. Lett. 62, 633–636 (2008)

    Article  Google Scholar 

  9. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  Google Scholar 

  10. G. Yao, M. Gao, Y. Ji, W. Liang, L. Gao, S. Zheng, Y. Wang, B. Pang, Y.B. Chen, H. Zeng, H. Li, Z. Wang, J. Liu, C. Chen, Y. Lin, Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates. Sci. Rep. 6, 34683 (2016)

    Article  Google Scholar 

  11. D. Valim, A.G. Souza Filho, P.T.C. Freire, S.B. Fagan, A.P. Ayala, J. Mendes Filho, A.F.L. Almeida, P.B.A. Fechine, A.S.B. Sombra, J. Staun Olsen, L. Gerward, Raman scattering and x-ray diffraction studies of polycrystalline CaCu3Ti4O12 under high-pressure. Phys Rev B 70, 132103 (2004)

    Article  Google Scholar 

  12. J. Wang, L. Zhenya, T. Deng, C. Zhong, Z. Chen, Improved dielectric, nonlinear and magnetic properties of cobalt-doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 38, 3505–3511 (2018)

    Article  Google Scholar 

  13. X. Ling-Fang, C. Mao, V.V. Marchenkov, K. Sun, T.V. Dyachkova, A.P. Tyutyunnik, Y.G. Zainulin, C.-P. Yang, S.-H. Liang, Influence of sintering atmosphere and thermobaric treatment (TBT) on dielectric behaviors of CaCu3Ti4O12 ceramics. Phys. Lett. A 382, 2861–2867 (2018)

    Article  Google Scholar 

  14. J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. C 89, 25–32 (2018)

    Article  Google Scholar 

  15. X. Xue, H. Yan, F. Yuqiao, Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium storage performances for lithium-ion batteries. Solid State Ion 335, 1–6 (2019)

    Article  Google Scholar 

  16. H. Yan, F. Yuqiao, W. Xinming, X. Xue, C. Li, L. Zhang, Core-shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage. Solid State Ion 336, 95–101 (2019)

    Article  Google Scholar 

  17. S.-Y. Choi, S.-Y. Chung, T. Yamamoto, Y. Ikuhara, Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv. Mater. 21, 885–889 (2009)

    Article  Google Scholar 

  18. M.-H. Whangbo, M.A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant. Chem. Mater. 18, 3257–3260 (2006)

    Article  Google Scholar 

  19. W. Li, R.W. Schwartz, Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007)

    Article  Google Scholar 

  20. S.-W. Choi, S.-H. Hong, Effect of Al doping on the electric and dielectric properties of CaCu3Ti4O12. J. Am. Ceram. Soc. 90, 4009–4011 (2007)

    Google Scholar 

  21. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 232903 (2006)

    Article  Google Scholar 

  22. A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J. Alloys Compd. 491, 507–512 (2010)

    Article  Google Scholar 

  23. M.A. Subramanian, A.W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci. 4, 347–351 (2002)

    Article  Google Scholar 

  24. J. Guo, L. Sun, Q. Ni, E. Cao, W. Hao, Y. Zhang, Y. Tian, J. Lin, Dielectric properties and nonlinear I-V electrical behavior of (Ni2+, Zr4+) co-doping CaCu3Ti4O12 ceramics. Appl. Phys. A 124, 635 (2018)

    Article  Google Scholar 

  25. C. Aydın, M.S. Abd El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Opt. Laser Technol. 48, 447–452 (2013)

    Article  Google Scholar 

  26. R. Late, H.M. Rai, S.K. Saxena, R. Kumar, A. Sagdeo, P.R. Sagdeo, Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic. J. Mater. Sci. 27, 5878–5885 (2016)

    Google Scholar 

  27. I.S. Yahia, H.Y. Zahran, F.H. Alamri, Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties. Synth. Met. 218, 19–26 (2016)

    Article  Google Scholar 

  28. J.A. Cuervo-Farfán, C.A.P. Vargas, D.S.F. Viana, F.P. Milton, D. Garcia, D.A.L. Téllez, J. Roa-Rojas, Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic. J. Mater. Sci. 29, 20942–20951 (2018)

    Google Scholar 

  29. A. Bouzidi, I.S. Yahia, M.S.A. El-Sadek, Novel and highly stable indigo (C.I. Vat Blue I) organic semiconductor dye: crystal structure, optically diffused reflectance and the electrical conductivity/dielectric behaviors. Dyes Pigment. 146, 66–72 (2017)

    Article  Google Scholar 

  30. W. Li, R.W. Schwartz, ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: grain boundary and domain boundary effects. Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  31. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  32. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  33. Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015)

    Article  Google Scholar 

  34. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    Article  Google Scholar 

  35. W. Yang, Yu. Shuhui, R. Sun, D. Ruxu, Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater. 59, 5593–5602 (2011)

    Article  Google Scholar 

  36. M. Atif, M. Nadeem, W. Khalid, Z. Ali, Structural, magnetic and impedance spectroscopy analysis of (0.7)CoFe2O4+(0.3)BaTiO3 magnetoelectric composite. Mater. Res. Bull. 107, 171–179 (2018)

    Article  Google Scholar 

  37. L. Singh, I.W. Kim, B.C. Sin, A. Ullah, S.K. Woo, Y. Lee, Study of dielectric, AC-impedance, modulus properties of 0.5Bi0.5Na0.5TiO3·0.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method. Mater. Sci. Semicond. Process. 31, 386–396 (2015)

    Article  Google Scholar 

  38. W. Shen, O. Tianji, J. Wang, T. Qin, G. Zhang, X. Zhang, Y. Han, Y. Ma, C. Gao, Effects of high pressure on the electrical resistivity and dielectric properties of nanocrystalline SnO2. Sci. Rep. 8, 5086 (2018)

    Article  Google Scholar 

  39. P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Impedance spectroscopy study of LaMnO3 modified BaTiO3 ceramics. Mater. Sci. Eng. B 164, 165–171 (2009)

    Article  Google Scholar 

  40. A. Sakthisabarimoorthi, S.A.M.B. Dhas, R. Robert, M. Jose, Influence of Erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater. Res. Bull. 106, 81–92 (2018)

    Article  Google Scholar 

  41. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti3.95Zn0.05O12 ceramic. Ceram. Int. 44, 5996–6001 (2018)

    Article  Google Scholar 

  42. A.B.J. Kherrata, N. Moutiab, K. Khirouni, W. Boujelbene, Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75–83 (2018)

    Article  Google Scholar 

  43. K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Grain size independence of giant dielectric permittivity of CaCu3Ti4−xScxO12 ceramics. Ceram. Int. 40, 15897–15906 (2014)

    Article  Google Scholar 

  44. A. Zaafouri, M. Megdiche, M. Gargouri, Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7. Ionics 21, 1867–1879 (2015)

    Article  Google Scholar 

  45. X. Zunping, H. Qiang, Y. Chen, Z. Chen, Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 191, 1–5 (2017)

    Article  Google Scholar 

  46. K. Parida, S. Das, P.K. Mahaptra, R.N.P. Choudhary, Relaxor behavior and impedance spectroscopic studies of chemically synthesized SrCu3Ti4O12 ceramic. Mater. Res. Bull. 111, 7–16 (2019)

    Article  Google Scholar 

  47. Z. Wang, J. Guo, W. Hao, E. Cao, Y. Zhang, L. Sun, X. Panpan, Microstructures and dielectric properties of sol-gel prepared K-doped CaCu3Ti4O12 ceramics. J. Electroceram. 40, 115–121 (2018)

    Article  Google Scholar 

  48. G. Murugesan, R. Nithya, S. Kalainathan, S. Hussain, High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3−δ single crystals. RSC Adv. 5, 78414–78421 (2015)

    Article  Google Scholar 

  49. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its significance in signal transport network. J. Mater. Sci. 29, 5014–5024 (2018)

    Google Scholar 

  50. K. Parida, R.N.P. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics. Mater. Res. Express 4, 076302 (2017)

    Article  Google Scholar 

  51. W. Wan, J. Luo, C.-e. Huang, J. Yang, Y. Feng, W.-X. Yuan, Y. Ouyang, D. Chen, T. Qiu, Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility. Ceram. Int. 44, 5086–5092 (2018)

    Article  Google Scholar 

  52. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Lett. 8, 291–311 (2016)

    Article  Google Scholar 

  53. C. Rayssi, S. Elkossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er01Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)

    Article  Google Scholar 

  54. B.N. Parida, R. Padhee, D. Suara, A. Mishra, R.N.P. Choudhary, Dielectric relaxation and impedance analysis of ferroelectric double perovskite Pb2BiNbO6. J. Mater. Sci. 28, 1824–1831 (2017)

    Google Scholar 

  55. N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, R.N.P. Choudhary, Complex impedance properties of LiSr2Nb5O15 ceramic. J. Adv. Ceram. 1, 221–226 (2012)

    Article  Google Scholar 

  56. N. Suman Rani, R.Punia Ahlawat, K.M. Sangwan, P. Khandewal, Dielectric and impedance studies of La and Zn co-doped complex perovskite CaCu3Ti4O12 ceramic. Ceram. Int. 44, 23125–23136 (2018)

    Article  Google Scholar 

  57. L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.-I. Lee, Y. Lee, Dielectric, AC-impedance, modulus studies on 0.5BaTiO3 0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)

    Article  Google Scholar 

  58. L. Zhang, Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 87, 022907 (2005)

    Article  Google Scholar 

  59. C.C. Wang, L.W. Zhang, Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: post-sintering annealing studies. Phys. Rev. B 74, 024106 (2006)

    Article  Google Scholar 

  60. G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Electrical properties of AC3B4O12-type perovskite ceramics with different cation vacancies. Mater. Res. Bull. 65, 260–265 (2015)

    Article  Google Scholar 

  61. H. Ihrig, D. Hennings, Electrical transport properties of n-type BaTiO3. Phys. Rev. B 17, 4593–4599 (1978)

    Article  Google Scholar 

  62. C. Ang, Yu. Zhi, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  63. Q. Zheng, H. Fan, C. Long, Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 511, 90–94 (2012)

    Article  Google Scholar 

  64. W. Li, R.W. Schwartz, Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007)

    Article  Google Scholar 

  65. M. Atif, M. Nadeem, Interplay between the ferromagnetic and ferroelectric phases on the magnetic and impedance analysis of (x)Pb(Zr0.52Ti0.48)O3–(1−x)CoFe2O4 composites. J. Alloys Compd. 623, 447–453 (2015)

    Article  Google Scholar 

  66. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12. Phys. Rev. B 70, 144106–144112 (2004)

    Article  Google Scholar 

  67. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3, ceramics. J. Alloys Compd. 509, 6388–6394 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gaâbel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaâbel, F., Khlifi, M., Hamdaoui, N. et al. Microstructural, structural and dielectric analysis of Ni-doped CaCu3Ti4O12 ceramic with low dielectric loss. J Mater Sci: Mater Electron 30, 14823–14833 (2019). https://doi.org/10.1007/s10854-019-01886-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01886-w

Navigation