Skip to main content
Log in

Influence of exposure time of LASER radiations on structural, optical, nonlinear optical and dielectric results of Sb2Se3 nanofilms

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sb2Se3 thin films which prepared using thermal evaporation were irradiated using LASER beam with different times of exposure (texpos). X-ray diffraction (XRD) results showed that the structure of these samples had changed from amorphous structure to polycrystalline structure with (texpos). The surface topography of these samples were studied using scanning electron microscopy (SEM). The measured optical parameters such as transmission (T) and reflection (R) were effected by these radiations. The determined optical energy gap (Eg) increases with (texpos). The values of oscillating energy (Eo) and dispersion energy (Ed) increased with (texpos). The dielectrical results such as dielectric loss (ε\) and dielectric tangent loss (ε\\) were affected and increase with (texpos). The determined values for both real part of optical conductivity (σ1) and imaginary part of optical conductivity (σ2) increase also with (texpos). The nonlinear optical parameters such as, nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ(3)). The nonlinear results affected with (texpos). Finally, the density of states and Fermi level position for these samples were determined optically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.J. Carey, J.P. Allen, D.O. Scanlon, G.W. Watson, The electronic structure of the antimony chalcogenide series: prospects for optoelectronic applications. J. Solid State Chem. 213, 116–125 (2014)

    Article  CAS  Google Scholar 

  2. P. Kumar, T.S. Sathiaraj, R. Thangaraj, Optical properties of amorphous Sb2Se3: Sn films. Philos. Mag. Lett. 90(3), 183–192 (2011)

    Article  CAS  Google Scholar 

  3. A. Bera, K. Pal, D.V.S. Muthu, S. Sen, P. Guptasarma, U.V. Waghmare, A.K. Sood, Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb2Se3. Phys. Rev. Lett. 110, 107401 (2013)

    Article  CAS  Google Scholar 

  4. L. Dai, K. Liu, H. Li, L. Wu, H. Hu, Y. Zhuang, L. Yang, C. Pu, P. Liu, Pressure-induced irreversible metallization accompanying the phase transitions in Sb2S3. Phys. Rev. B 97, 024103 (2018)

    Article  Google Scholar 

  5. M. Muralikrishna, A.S. Kiran, B. Ravikanth, P. Sowmendran, V. SaiMuthukumar, K. Venkataramaniah, Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles. AIP Conf. Proc. 1591, 411–414 (2014)

    Article  CAS  Google Scholar 

  6. Y. Lai, Z. Chen, C. Han, L. Jiang, F. Liu, J. Li, Y. Liu, Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Appl. Surf. Sci. 261, 510–514 (2012)

    Article  CAS  Google Scholar 

  7. T.M. Razykov, A.X. Shukurov, O.K. Atabayev, K.M. Kuchkarov, B. Ergashev, A.A. Mavlonov, Growth and characterization of Sb2Se3 thin films for solar cells. Sol. Energy 173, 225–228 (2018)

    Article  CAS  Google Scholar 

  8. Y.R. Lazcano, Y. Pena, M.T.S. Nair, P.K. Nair, Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments. Thin Solid Films 493, 77–82 (2005)

    Article  CAS  Google Scholar 

  9. H. Sakai, K. Shimakawa, Y. Inagaki, T. Arizumi, Electrical properties of chalcogenide glasses of Te-Se-Ge and Te-Se-Sb systems. Jpn. J. Appl. Phys. 13, 500–504 (1974)

    Article  CAS  Google Scholar 

  10. E. Černošková, R. Todorov, Z. Černošek, J. Holubová, L. Beneš, Thermal properties and the structure of amorphous SbSe thin film. J. Therm. Anal. Calorim. 118, 105–110 (2014)

    Article  CAS  Google Scholar 

  11. C. Kaito, T. Fujita, T. Kimura, K. Hanamoto, N. Suzuki, S. Kimura, Y. Saito, Structure and crystallization of Sb Se films prepared by vacuum evaporation method. Thin Solid Films 312, 93–98 (1998)

    Article  CAS  Google Scholar 

  12. K.Y. Rajpure, C.D. Lokhande, C.H. Bhosale, Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium. Thin Solid Films 311, 114–118 (1997)

    Article  CAS  Google Scholar 

  13. P. Kumar, R. Thangaraj, Glassy state and structure of Sn–Sb–Se chalcogenide alloy. J. Non-Cryst. Solids 352, 2288–2291 (2006)

    Article  CAS  Google Scholar 

  14. J.M. Yoon, E.T. Kim, J.Y. Lee, Y.T. Kim, Transmission electron microscopy study on the crystallization of Sb–Se–Te ternary alloys. Jpn. J. Appl. Phys. 48, 105501–105502 (2009)

    Article  CAS  Google Scholar 

  15. I. Efthimiopoulos, J. Zhang, M. Kucway, C. Park, R.C. Ewing, Y. Wang, Sb2Se3 under pressure. Sci. Rep. 3, 2665–2672 (2013)

    Article  Google Scholar 

  16. K.A. Chandrasekharani, A.G. Kunjomana, Growth and micro indentation analysis of pure and doped Sb2Se3 crystals. Turk. J. Phys. 33, 209–217 (2009)

    Google Scholar 

  17. R. Browning, N. Kuperman, B. Moon, R. Solanki, Atomic layer growth of InSe and Sb2Se3 layered semiconductors and their heterostructure. Electronics 6, 27–36 (2017)

    Article  CAS  Google Scholar 

  18. Z. Li, H. Zhu, Y. Guo, X. Niu, X. Chen, C. Zhang, W. Zhang, X. Liang, D. Zhou, J. Chen, Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3. Appl. Phys. Express 9(5), 052302–052303 (2016)

    Article  CAS  Google Scholar 

  19. K. Zeng, D.J. Xue, J. Tang, Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31, 063001–063002 (2016)

    Article  CAS  Google Scholar 

  20. G.P. Voutsas, A.G. Papazoglou, P.J. Rentzeperis, D. Siapkas, The crystal structure of antimony selenide, Sb2Se3. Z. Kristallogr. Cryst. Mater. 171, 261–268 (1985)

    Article  CAS  Google Scholar 

  21. N.W. Tideswell, F.H. Kruse, J.D. McCullough, The crystal structure of antimony selenide Sb2Se3. Acta Crystallogr. 10, 99–102 (1957)

    Article  CAS  Google Scholar 

  22. H. Koc, A.M. Mamedov, E. Deligoz, H. Ozisik, First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 14, 1211–1220 (2012)

    Article  CAS  Google Scholar 

  23. S.L. Benjamin, C.H. de Groot, A.L. Hector, R. Huang, E. Koukharenko, W. Levason, G. Reid, Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. J. Mater. Chem. C Mater. Opt. Electron. Device 3(2), 423–430 (2015)

    Article  CAS  Google Scholar 

  24. C. Chen, D.C. Bobela, Y. Yang, L. Shuaicheng, K. Zeng, G. Cong, B. Yang, L. Gao, Y. Zhao, M.C. Beard, J. Tang, Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10, 18–30 (2017)

    Article  Google Scholar 

  25. N. Hu, M.A. Cheney, Y. Hanifehpour, S.W. Joo, B.K. Min, Synthesis, characterization, and catalytic performance of Sb2Se3nanorods. J. Nanomater. 2017, 1–8 (2017)

    Google Scholar 

  26. A. Abdel Moez, Study of structure, optical and dielectric properties of nano Sb2Te3 and Sb2Se3 thin films as a new optical recording material. Aust. J. Basic Appl. Sci. 5(8), 1305–1312 (2011)

    CAS  Google Scholar 

  27. B.K. Abhijit, A. Jayaraman, M. Molli, Electronic band structure and optical properties of antimony selenide under pressure. AIP Conf. Proc. 1731, 090020–090021 (2016)

    Article  Google Scholar 

  28. M. Molli, P. Pradhan, D. Dutta, A. Jayaraman, A.B. Kademane, V.S. Muthukumar, V. Kamisetti, R. Philip, Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime. Appl. Phys. A 122, 549–553 (2016)

    Article  CAS  Google Scholar 

  29. C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, J. Tang, Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Appl. Phys. Lett. 107, 043905 (2015)

    Article  CAS  Google Scholar 

  30. P. Sharma, I. Sharma, S.C. Katyal, Physical and optical properties of binary amorphous selenium-antimony thin films. J. Appl. Phys. 105, 053509 (2009)

    Article  CAS  Google Scholar 

  31. K. Yang, B. Li, G. Zeng, Structural, morphological, compositional, optical and electrical properties of Sb2Se3 thin films deposited by pulsed laser deposition. Superlattices Microstruct. 145, 106618 (2020)

    Article  CAS  Google Scholar 

  32. M. Malligavathy, R.T.A. Kumar, C. Das, S. Asokan, D.P. Padiyan, Growth and characteristics of amorphous Sb2Se3 thin films of various thicknesses for memory switching applications. J. Non-Cryst. Solids 429, 93–97 (2015)

    Article  CAS  Google Scholar 

  33. X. Zheng, Y. Xie, L. Zhu, X. Jiang, Y. Jia, W. Song, Y. Sun, Growth of Sb2E3 (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process. Inorg. Chem. 41, 455–461 (2002)

    Article  CAS  Google Scholar 

  34. H. Maghraoui-Meherzi, T. Ben Nasr, M. Dachraoui, Synthesis, structure and optical properties of Sb2Se3. Mater. Sci. Semicond. Process. 16, 179–184 (2013)

    Article  CAS  Google Scholar 

  35. E. Cernoskova, R. Todorov, Z. Cernosek, J. Holubova, L. Benes, Thermal properties and the structure of amorphous Sb2Se3 thin film. J. Therm. Anal. Calorim. 118, 105–110 (2014)

    Article  CAS  Google Scholar 

  36. E. El-Sayad, Compositional dependence of the optical properties of amorphous Sb2Se3−xSx thin films. J. Non-Cryst. Solids 354, 3806–3811 (2008)

    Article  CAS  Google Scholar 

  37. A.M. Farid, E. Abd El-Wahabb, M. Fadel, Electrical and optical properties of (Sb2Se3)2 (Sb2Te3)1 thin films. J. Mater. Sci. Mater. Electron. 13, 609 (2002)

    Article  CAS  Google Scholar 

  38. S.S. Chiad, A.E. Ibrahim, N.F. Habubi, Annealing effect on the optical properties of Sb2S3 thin films. J. Univ. Anbar Pure Sci. 5, 18–22 (2011)

    Google Scholar 

  39. M.M. Abou Sekkina, Effects of temperature and frequency changes on the dielectric properties of modified chalcogenides. Thermochim. Acta 120, 231 (1987)

    Article  CAS  Google Scholar 

  40. T. Ben Nasr, H. Maghraoui-Meherzi, H. Ben Abdallah, R. Bennaceur, Electronic structure and optical properties of Sb2S3 crystal. Physica B Phys. Condens. Matter 406, 287–292 (2011)

    Article  CAS  Google Scholar 

  41. R. Hamrouni, N.E.H. Segmane, D. Abdelkader, A. Amara, Linear and non linear optical properties of Sb2Se3 thin films elaborated from nano-crystalline mechanically alloyed powder. Appl. Phys. A 124, 861 (2018)

    Article  CAS  Google Scholar 

  42. C. Liu, Y. Yuan, L. Cheng, J. Su, X. Zhang, X. Li, H. Zhang, X. Zhang, J. Li, Tunable nonlinear optical absorption in amorphous and crystalline Sb2Se3 thin films. J. Alloys Compd. 791, 753–760 (2019)

    Article  CAS  Google Scholar 

  43. C. Liu, L. Cheng, Y. Yuan, J. Su, X. Zhang, X. Li, H. Zhao, H. Zhang, Y. Zheng, J. Li, Contrastive investigation on linear optical properties and nonlinear absorption behaviors between Sb2Se3 and Sb2Te3 thin films. Mater. Res. Express 6, 086446 (2019)

    Article  CAS  Google Scholar 

  44. A.M. Salem, M.S. Selim, A.M. Salem, Structure and optical properties of chemically deposited Sb2S3 thin films. J. Phys. D Appl. Phys. 34, 12 (2001)

    Article  CAS  Google Scholar 

  45. L. Meng, H. Meng, W. Gog, W. Liu, Z. Zhang, Growth and characterization of Bi2Se3 thin films by pulsed laser deposition using alloy target. Thin Solid Films 519, 7627–7631 (2011)

    Article  CAS  Google Scholar 

  46. Y. Badr, I.K. Battisha, A.M.S. El Nahrawy, B. Elouadi, M. Kamal, Physical study of thin film and monolithic nano-composites [SiO2: 11P2O5: 3Al2O3: (1.2) Er (1.2, 1.8 and 3) Yb] prepared by sol gel technique, planar waveguide. New J. Glass Ceram. 1, 71–78 (2011)

    Article  CAS  Google Scholar 

  47. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  CAS  Google Scholar 

  48. Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers. Mater. Sci. Eng. B 174, 145–149 (2010)

    Article  CAS  Google Scholar 

  49. M. Fadel, S.A. Fayek, M.O. Abou-Helal, M.M. Ibrahium, A.M. Shakra, Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloys Compd. 485, 604–609 (2009)

    Article  CAS  Google Scholar 

  50. J. Aranda, J.L. Morenza, J. Esteve, J.M. Codina, Optical properties of vacuum-evaporated CdTe thin films. Thin Solid Films 120, 23–30 (1984)

    Article  CAS  Google Scholar 

  51. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  52. Optical Process in Semiconductors, ed. by J.I. Pankove, Dover Publications, Inc., New York, (1971).

  53. A.I. Ali, A.H. Ammar, A. Abdel Moez, Influence of substrate temperature on structural, optical properties and dielectric results of nano-ZnO thin films prepared by Radio Frequency technique. Superlattices Microstructur. 65, 285–298 (2014)

    Article  CAS  Google Scholar 

  54. A.I. Ali, J.Y. Son, A.H. Ammar, A. Abdel Moez, Y.S. Kim, Optical and dielectric results of Y0.225Sr0.775CoO3±δ thin films studied by spectroscopic ellipsometry technique. Results Phys. 3, 167–172 (2013)

    Article  Google Scholar 

  55. A.M. Farid, I.K. El-Zawawi, A.H. Ammara, Compositional effects on the optical properties of Gex Sb40−x Se60 thin films. Vacuum 86, 1255–1261 (2012)

    Article  CAS  Google Scholar 

  56. S.H. Wemple, M. DiDomenico Jr., Optical dispersion and the structure of solids. Phys. Rev. Lett. 23, 1156–1160 (1969)

    Article  CAS  Google Scholar 

  57. K. Anshu, A. Sharma, Study of Se based quaternary Se Pb (Bi, Te) chalcogenide thin films for their linear and nonlinear optical properties. Optik 127, 48–54 (2016)

    Article  CAS  Google Scholar 

  58. A.B. Djurišić, E.H. Li, Modeling the optical properties of sapphire (α-Al2O3). Opt. Commun. 157, 72–76 (1998)

    Article  Google Scholar 

  59. H.A. Elmeleegi, Z.E.S. El Mandouh, A.A. Moez, Influence of composition on the structure and optoelectronic properties of PbxIn25-xSe75 thin films. Turk. J. Phys. 38, 145–154 (2014)

    Article  CAS  Google Scholar 

  60. H. Tichá, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    Google Scholar 

  61. P. Zhou, G. You, J. Li, S. Wang, S. Qian, L. Chen, Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Express 13, 1508–1514 (2005)

    Article  CAS  Google Scholar 

  62. A.A. Ziabari, F.E. Ghodsi, Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. J. Alloys Compd. 509, 8748–8755 (2011)

    Article  CAS  Google Scholar 

  63. B. Derkowskaa, B. Sahraouia, X.N. Phua, W. Bala, Nonlinear optical properties in ZnSe crystals. Proc. SPIE Int. Soc. Opt. Eng. 4412, 337–341 (2001)

    Google Scholar 

  64. S.M. Sze, Physics of Semiconductor Devices (Wiley-Inter science, New York, 1969).

    Google Scholar 

  65. M.H. Shang, J. Zhang, S. Wei, Y. Zhu, L. Wang, H. Hou, Y. Wu, T. Fujikawab, N. Uenob, Bi-doped Sb2S3 for low effective mass and optimized optical properties. J. Mater. Chem. C 4, 5081–5090 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel Moez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moez, A.A., Ali, A.I. Influence of exposure time of LASER radiations on structural, optical, nonlinear optical and dielectric results of Sb2Se3 nanofilms. J Mater Sci: Mater Electron 32, 1303–1315 (2021). https://doi.org/10.1007/s10854-020-04903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04903-5

Navigation