Skip to main content

Advertisement

Log in

Effect of low energy (keV) ion irradiation on structural, optical and morphological properties of SnO2–TiO2 nanocomposite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

RF Sputtering deposition technique was used to deposit the thin films of nanocomposite oxides as SnO2–TiO2 on Si and ITO coated glass substrate. As a target, SnO2–TiO2 was taken according to their molecular weight percent ratio of 3:1. Material modification has been induced by low energy ion beam with varying ion fluence from 5E13 to 5E16 ions/cm2. Glancing Angle X-ray Diffraction technique was used to study crystallite size, phase transformation and stability of different planes of pristine and irradiated thin films. The important peaks observed in XRD pattern were at angles 26.95°, 34.27°, 37.60°, 50.88° and 52.46°. The grain size distribution and surface morphology were studied by Atomic Force Microscopy technique in tapping mode. The results show that the grain size varies with ion fluence. Raman analysis revealed that the sharp peak at the frequency of 520 cm−1 ascribed to the T2g mode was observed for the pristine and lowest fluence irradiated film deposited on Si substrate. With increasing ion fluence, an opposite trend in SnO2 B2g peak was observed at nearly 775 cm−1 and the also peak bump was observed as a function of ion beam fluence. The optical band gap decreases from 3.90 to 3.63 eV due to the generation of ions and free radicals in valance band by varying ion fluence which was observed by UV/Visible Spectroscopy. The film thickness was determined to be 220 nm using Rutherford Backscattering Spectrometry. It also confirmed the absence of any impurities in the pristine and irradiated thin films. The material properties were mainly modified by the point defects and grain size growth arising due to nuclear energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Morimitsu, Y. Ozaki, S. Suzuki, M. Matsunaga, Sens. Actuators B 67, 184 (2000)

    Article  Google Scholar 

  2. X. Pan, L. Fu, J. Appl. Phys. 89, 6048 (2001)

    Article  Google Scholar 

  3. M.K. Jaiswal, A. Kumar, D. Kanjilal, T. Mohanty, Appl. Surf. Sci. 263, 586 (2012)

    Article  Google Scholar 

  4. K.G. Godinho, A. Walsh, G.W. Watson, J. Phys. Chem. 113, 439 (2008)

    Google Scholar 

  5. Ç. Kılıç, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  Google Scholar 

  6. D.H. Kim, W.-S. Kim, S.B. Lee, S.-H. Hong, Sens. Actuators B 147, 653 (2010)

    Article  Google Scholar 

  7. A. Kumar, M. Jaiswal, D. Kanjilal, R.K. Joshi, T. Mohanty, Appl. Phys. Lett. 99, 013109 (2011)

    Article  Google Scholar 

  8. S. Ansari, P. Boroojerdian, S. Sainkar, R. Karekar, R. Aiyer, S. Kulkarni, Thin solid films 295, 271 (1997)

    Article  Google Scholar 

  9. S. Chappel, A. Zaban, Sol. Energy Mater. Sol. Cells 71, 141 (2002)

    Article  Google Scholar 

  10. S. Sankar, K. Gopchandran, Cryst. Res. Technol. 44, 989 (2009)

    Article  Google Scholar 

  11. W. Sun, X. Sun, T. Peng, Y. Liu, H. Zhu, S. Guo, X. Zhao, J. Power Sources 201, 402 (2012)

    Article  Google Scholar 

  12. F. Edelman, H. Hahn, S. Seifried, C. Alof, H. Hoche, A. Balogh, P. Werner, K. Zakrzewska, M. Radecka, P. Pasierb, Mater. Sci. Eng. B 69, 386 (2000)

    Article  Google Scholar 

  13. J. Li, L. Hu, J. Liu, L. Wang, T.J. Marks, G. Grüner, Appl. Phys. Lett. 93, 310 (2008)

    Google Scholar 

  14. M.K. Jaiswal, D. Kanjilal, R. Kumar, Nucl. Instrum. Methods Phys. Res. B 315, 179 (2013)

    Article  Google Scholar 

  15. A. Mayabadi, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, A. Jadhavar, M. Kamble, B. Gabhale, V. Waman, Thin Solid Films 589, 493 (2015)

    Article  Google Scholar 

  16. J. Yu, X. Zhao, Q. Zhao, Thin solid films 379, 7 (2000)

    Article  Google Scholar 

  17. J. Yu, X. Zhao, Q. Zhao, Mater. Chem. Phys. 69, 25 (2001)

    Article  Google Scholar 

  18. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuators B 68, 189 (2000)

    Article  Google Scholar 

  19. K. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, D. Kanjilal, K. Asokan, Vacuum 90, 39 (2013)

    Article  Google Scholar 

  20. X. Yu, Y. Li, W. Wlodarski, S. Kandasamy, K. Kalantar-Zadeh, Sens. Actuators B 130, 25 (2008)

    Article  Google Scholar 

  21. S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Vacuum 76, 507 (2004)

    Article  Google Scholar 

  22. N. Khemasiri, S. Jessadaluk, C. Chananonnawathorn, S. Vuttivong, T. Lertvanithphol, M. Horprathum, P. Eiamchai, V. Patthanasettakul, A. Klamchuen, A. Pankiew, Surf. Coat. Technol. 306, 346 (2016)

    Article  Google Scholar 

  23. V.B. Raj, H. Singh, A. Nimal, M. Sharma, V. Gupta, Sens. Actuators B 178, 636 (2013)

    Article  Google Scholar 

  24. M. Pavlovič, I. Strašík, Nucl. Instrum. Methods Phys. Res. B 257, 601 (2007)

    Article  Google Scholar 

  25. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013)

    Article  Google Scholar 

  26. J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219, 1027 (2004)

    Article  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  Google Scholar 

  28. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 216, 1 (2004)

    Article  Google Scholar 

  29. M. Caron, H. Rothard, M. Toulemonde, B. Gervais, M. Beuve, Nucl. Instrum. Methods Phys. Res. B 245, 36 (2006)

    Article  Google Scholar 

  30. S. Sorel, P.E. Lyons, S. De, J.C. Dickerson, J.N. Coleman, Nanotechnology 23, 185201 (2012)

    Article  Google Scholar 

  31. A. Dakhel, Mater. Chem. Phys. 130, 398 (2011)

    Article  Google Scholar 

  32. S. Rani, N. Puri, S.C. Roy, M. Bhatnagar, D. Kanjilal, Nucl. Instrum. Methods Phys. Res. B 266, 1987 (2008)

    Article  Google Scholar 

  33. S.-H. Hong, S. Åsbrink, Acta Crystallogr. B 38, 2570 (1982)

    Article  Google Scholar 

  34. M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992)

    Article  Google Scholar 

  35. R. Sivakumar, C. Sanjeeviraja, M. Jayachandran, R. Gopalakrishnan, S. Sarangi, D. Paramanik, T. Som, J. Appl. Phys. 101, 034913 (2007)

    Article  Google Scholar 

  36. Z. Wen, L. Tian-Mo, Physica B 405, 1345 (2010)

    Article  Google Scholar 

  37. A.F. Shojaei, A. Shams-Nateri, M. Ghomashpasand, Superlatt. Microstruct. 88, 211 (2015)

    Article  Google Scholar 

  38. P. Mallick, R. Biswal, C. Rath, D. Agarwal, A. Tripathi, D. Avasthi, D. Kanjilal, P. Satyam, N. Mishra, Nucl. Instrum. Methods Phys. Res. B 268, 470 (2010)

    Article  Google Scholar 

  39. M.K. Jaiswal, D. Kanjilal, R. Kumar, Nucl. Instrum. Methods Phys. Res. B 314, 170 (2013)

    Article  Google Scholar 

  40. E. Bringa, R. Johnson, Phys. Rev. Lett. 88, 165501 (2002)

    Article  Google Scholar 

  41. L. Shi, Y. Xu, Q. Li, Nanoscale 2, 2104 (2010)

    Article  Google Scholar 

  42. F. Tian, Y. Zhang, J. Zhang, C. Pan, J. Phys. Chem. C 116, 7515 (2012)

    Article  Google Scholar 

  43. L. Avakyants, L. Gerasimov, V. Gorelik, N. Manja, E. Obraztsova, Y.I. Plotnikov, J. Mol. Struct. 267, 177 (1992)

    Article  Google Scholar 

  44. A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, B. Champagnon, J. Am. Ceram. Soc. 89, 596 (2006)

    Article  Google Scholar 

  45. T. Kumar, Mohanty, J. Phys. Chem. C 118, 7130 (2014)

    Article  Google Scholar 

  46. R. Kumaravel, V. Gokulakrishnan, K. Ramamurthi, I. Sulania, D. Kanjilal, K. Asokan, D. Avasthi, Nucl. Instrum. Methods Phys. Res. B 268, 2391 (2010)

    Article  Google Scholar 

  47. R. Ramola, S. Chandra, A. Negi, J. Rana, S. Annapoorni, R. Sonkawade, P. Kulriya, A. Srivastava, Physica B 404, 26 (2009)

    Article  Google Scholar 

  48. D. Mohanta, N. Mishra, A. Choudhury, Mater. Lett. 58, 3694 (2004)

    Article  Google Scholar 

  49. Y.S. Chaudhary, S.A. Khan, R. Shrivastav, V.R. Satsangi, S. Prakash, D. Avasthi, S. Dass, Nucl. Instrum. Methods Phys. Res. B 225, 291 (2004)

    Article  Google Scholar 

  50. S. Chowdhury, D. Mohanta, G. Ahmed, S. Dolui, D. Avasthi, A. Choudhury, J. Lumin. 114, 95 (2005)

    Article  Google Scholar 

  51. S. Singh, S. Prasher, Nucl. Instrum. Methods Phys. Res. B 222, 518 (2004)

    Article  Google Scholar 

  52. B. Astinchap, R. Moradian, K. Gholami, Mater. Sci. Semicond. Process. 63, 169 (2017)

    Article  Google Scholar 

  53. M. Rana, F. Singh, K. Joshi, S. Negi, R. Ramola, Thin Solid Films 616, 34 (2016)

    Article  Google Scholar 

  54. L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985)

    Article  Google Scholar 

  55. R.K. Pandey, M. Kumar, U.B. Singh, S.A. Khan, D. Avasthi, A.C. Pandey, Nucl. Instrum. Methods Phys. Res B 314, 21 (2013)

    Article  Google Scholar 

  56. S.K. Gautam, A. Das, S. Ojha, D. Shukla, D. Phase, F. Singh, PCCP 18, 3618 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. Rajesh Kumar is grateful to Inter University Accelerator Center (IUAC), New Delhi, India for providing financial assistance (Ref: IUAC/XIII.3A/59319) and the University Grants Commission, Govt. of India, New Delhi, India, as Raman Post Doctoral Fellow (F. No. 5-150/2016(IC) for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Jaiswal, M.K., Gupta, R. et al. Effect of low energy (keV) ion irradiation on structural, optical and morphological properties of SnO2–TiO2 nanocomposite thin films. J Mater Sci: Mater Electron 29, 13328–13336 (2018). https://doi.org/10.1007/s10854-018-9457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9457-6

Navigation