Skip to main content
Log in

Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Antimony selenide (Sb2Se3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states.We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petzelt J, Grigas J. Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals. Ferroelectrics, 1973, 5(1): 59–68

    Article  Google Scholar 

  2. Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J. Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014, 4(8): 1301846

    Article  Google Scholar 

  3. Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015, 107(4): 043905

    Article  Google Scholar 

  4. Ghosh G. The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria, 1993, 14(6): 753–763

    Article  Google Scholar 

  5. Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415

    Article  Google Scholar 

  6. Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J. Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 104(17): 173904

    Article  Google Scholar 

  7. Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Applied Materials & Interfaces, 2014, 6(13): 10687–10695

    Article  Google Scholar 

  8. Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905

    Article  Google Scholar 

  9. Liu X, Chen C, Wang L, Zhong J, Luo M, Chen J, Xue D J, Li D, Zhou Y, Tang J. Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23(12): 1828–1836

    Article  Google Scholar 

  10. Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G. Overcoming efficiency limitations of SnS-based solar cells. Advanced Energy Materials, 2014, 4(15): 1400496

    Article  Google Scholar 

  11. Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, http://www.solar-frontier.com/eng/news/2015/ C051171.html (accessed: November, 2016)

  12. First Solar pushes CdTe cell efficiency to record 22.1%, http://www.pv-tech.org/news/first-solar-pushes-cdte-cell-efficiency-to-record- 22.1 (accessed: November, 2016)

  13. Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): 1301465

    Article  Google Scholar 

  14. Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters, 2015, 106 (21): 213902

    Article  Google Scholar 

  15. Black J, Conwell E M, Seigle L, Spencer C W. Electrical and optical properties of some M2 V-BN3 VI-B semiconductors. Journal of Physics and Chemistry of Solids, 1957, 2(3): 240–251

    Article  Google Scholar 

  16. Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W, Reid G. Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(2): 423–430

    Article  Google Scholar 

  17. Gilbert L R, Van Pelt B, Wood C. The thermal activation energy of crystalline Sb2Se3. Journal of Physics and Chemistry of Solids, 1974, 35(12): 1629–1632

    Article  Google Scholar 

  18. Ma J, Su T, Li MD, Du W, Huang J, Guan X, Phillips D L. How and when does an unusual and efficient photoredox reaction of 2-(1-hydroxyethyl) 9, 10-anthraquinone occur? A combined timeresolved spectroscopic and DFT study. Journal of the American Chemical Society, 2012, 134(36): 14858–14868

    Article  Google Scholar 

  19. Jackson W B, Amer N M, Boccara A C, Fournier D. Photothermal deflection spectroscopy and detection. Applied Optics, 1981, 20(8): 1333–1344

    Article  Google Scholar 

  20. Madelung O. Semiconductors: Data Handbook. New York: Springer Science & Business Media, 2012

    Google Scholar 

  21. Engel M, Kunze F, Lupascu D C, Benson N, Schmechel R. Reduced exciton binding energy in organic semiconductors: tailoring the Coulomb interaction. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(2): 68–70

    Article  Google Scholar 

  22. Pavlica E, Bratina G. Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes. Applied Physics Letters, 2012, 101(9): 093304

    Article  Google Scholar 

  23. Haynes J R, Shockley W. The mobility and life of injected holes and electrons in Germanium. Physical Review, 1951, 81(5): 835–843

    Article  Google Scholar 

  24. Supplemental Material at http://link.springer.com/article/10.1007/s12200-017-0702-z for the detailed derivation of Eq. (3) and Hall mobility formula, biased IQE, PDS and SCLC, CV measurements, and the inter-atom distances in Sb2Se3

  25. Yang Y, Rodríguez-Córdoba W, Lian T. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. Journal of the American Chemical Society, 2011, 133(24): 9246–9249

    Article  Google Scholar 

  26. Yang Y, Ostrowski D P, France R M, Zhu K, van de Lagemaat J, Luther J M, Beard M C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10(1): 53–59

    Article  Google Scholar 

  27. Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and fewlayer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080

    Article  Google Scholar 

  28. Gokmen T, Gunawan O, Mitzi D B. Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. Journal of Applied Physics, 2013, 114(11): 114511

    Article  Google Scholar 

  29. Liu X X, Sites J R. Solar-cell collection efficiency and its variation with voltage. Journal of Applied Physics, 1994, 75(1): 577–581

    Article  Google Scholar 

  30. Seto J Y W. The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 1975, 46(12): 5247–5254

    Article  Google Scholar 

  31. Liu X, Xiao X, Yang Y, Xue D J, Li D, Chen C, Lu S, Gao L, He Y, C B M, Wang G, Chen S, Tang J. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Submitted to Progress in Photovoltaics: Research and Applications

  32. Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press, 2012

    Google Scholar 

  33. Guo B L, Chen Y H, Liu X J, Liu W C, Li A D. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Advances, 2014, 4(9): 097115

    Article  Google Scholar 

  34. Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411–4420

    Article  Google Scholar 

  35. Bube R H. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5): 1733–1737

    Article  Google Scholar 

  36. Ritter D, Weiser K. Suppression of interference fringes in absorption measurements on thin films. Optics Communications, 1986, 57(5): 336–338

    Article  Google Scholar 

  37. Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953, 92 (5): 1324

    Article  Google Scholar 

  38. Tumelero M A, Faccio R, Pasa A A. Unraveling the native conduction of trichalcogenides and it ideal band alignment for new photovoltaic interfaces. The Journal of Physical Chemistry C, 2016, 120(3): 1390–1399

    Article  Google Scholar 

  39. Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344

    Article  Google Scholar 

  40. Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy, 2016, 1: 16015

    Article  Google Scholar 

  41. Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn (S, Se)4 solar cells. Advanced Energy Materials, 2013, 3 (1): 34–38

    Article  Google Scholar 

  42. Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless B E, Noufi R. Characterization of 19.9%-efficient CIGS absorbers. In: Proceedings of 33rd IEEE Photovoltaic Specialists Conference, 2008, 1–6

    Google Scholar 

  43. Jaramillo R, Sher M J, Ofori-Okai B K, Steinmann V, Yang C, Hartman K, Nelson K A, Lindenberg A M, Gordon R G, Buonassisi T. Transient terahertz photoconductivity measurements of minoritycarrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119(3): 035101

    Article  Google Scholar 

  44. Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10(10): 765–771

    Article  Google Scholar 

  45. Saparov B, Sun J P, Meng W, Xiao Z, Duan H S, Gunawan O, Shin D, Hill I G, Yan Y, Mitzi D B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315–2322

    Article  Google Scholar 

  46. Tai K F, Gunawan O, Kuwahara M, Chen S, Mhaisalkar S G, Huan C H A, Mitzi D B. Fill factor losses in Cu2ZnSn (SxSe1–x)4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. Advanced Energy Materials, 2016, 6 (3): 1501609

    Article  Google Scholar 

  47. Song H, Zhan X, Li D, Zhou Y, Yang B, Zeng K, Zhong J, Miao X, Tang J. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7

    Article  Google Scholar 

  48. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970

    Article  Google Scholar 

  49. Ramakrishna Reddy K T, Koteswara Reddy N, Miles R W. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 3041–3046

    Article  Google Scholar 

  50. Kim G H, García de Arquer F P, Yoon Y J, Lan X, Liu M, Voznyy O, Jagadamma L K, Abbas A S, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y, Sargent E H. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Letters, 2015, 15(11): 7691–7696

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0204000), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61322401 and 91433105), the Special Fund for Strategic New Development of Shenzhen, China (No. JCYJ20160414102210144) and “National 1000 Young Talents” project. Professor Shiyou Chen at East China Normal University is acknowledged for helpful discussions. The authors would like to thank the Analytical and Testing Center of HUST and the Center for Nanoscale Characterization and Devices of WNLO for the characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Tang.

Additional information

Chao Chen received the B.S. degree in School of Physics, Huazhong University of Science and Technology (HUST) China in 2014. Now, he is studying for a doctor’s degree in Wuhan National Laboratory for Optoelectronics (WNLO) at HUST. He majors in photovoltaics and photodetector.

Jiang Tang received his Bachelor’s degree from University of Science and Technology of China at 2003, and his Ph.D. degree in Material Science and Engineering from University of Toronto at 2010. He spent one year and half as a postdoctoral researcher at IBM T. J. Watson research center and then joined in Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology as a professor in 2012. His group focuses on antimony selenide (Sb2Se3) thin film solar cells, halide perovskites nanocrystals for light emitting and single crystals for X- and γ-ray detection. He has published 70 + papers including Nat. Mater., Nat. Photonics with 3500 citations. He is the receiver of the “1000 Young Talents” and the National Natural Science Funds for Outstanding Young Scholar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bobela, D.C., Yang, Y. et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10, 18–30 (2017). https://doi.org/10.1007/s12200-017-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-017-0702-z

Keywords

Navigation