Skip to main content
Log in

Investigation of structure, optical, nonlinear optical, dielectrical properties and electronic results of La0.01Ba0.99TiO3, Sm0.5Sr0.5CoO3 and Sm0.5Sr0.5CoO3/La0.01Ba0.99TiO3 thin films grown on quartz substrates using pulsed laser deposition (PLD) technique

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We comparatively fabricated thin films of La0.01Ba0.99TiO3(LBTO), Sm0.5Sr0.5CoO3(SCO) and Sm0.5Sr0.5CoO3/La0.01Ba0.99TiO3 (SCO/LBTO) thin films grown on quartz substrates using pulsed laser deposition technique. The structure of these samples was carried out using X-ray diffraction, and these samples had a polycrystalline structure. The surface topography for these films was studied using scanning electron microscopy (FE-SEM) and shows grains with nano-sized and uniform nature of the thin films. The optical properties such as transmittance, absorbance and reflectance of these thin films were studied. The optical results such as absorption coefficient, optical energy gap and refractive index were determined. The oscillation energy and dispersion energy, on the other hand the dielectric results such as dielectric loss and dielectric tangent loss, were determined, while nonlinear optical results such as the third-order nonlinear optical susceptibility χ(3) were calculated for all these samples. Finally, the electronic results such as the density of state for both the valence and conduction band were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.H. Hoerman, G.M. Ford, L.D. Kaufmann, B.W. Wessels, Appl. Phys. Lett. 73, 2248–2251 (1998). https://doi.org/10.1063/1.121691

    Article  ADS  Google Scholar 

  2. S. Kim, T. Fujimoto, T. Manabe, I. Yamaguchi, T. Kumagai, S. Mizuta, J. Mater. Res. 14, 592–596 (1999). https://doi.org/10.1557/JMR.1999.0084

    Article  ADS  Google Scholar 

  3. H.B. Sharma, H.N.K. Sarma, A. Mansingh, J. Appl. Phys. 85, 341–347 (1999). https://doi.org/10.1063/1.369453

    Article  ADS  Google Scholar 

  4. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074105–074112 (2005). https://doi.org/10.1063/1.1879074

    Article  ADS  Google Scholar 

  5. L. Dong, D.S. Stone, R.S. Lakes, J. Appl. Phys. 109, 063531–063537 (2011). https://doi.org/10.1063/1.3552600

    Article  ADS  Google Scholar 

  6. T. Harigai, S.-M. Nam, H. Kakemoto, S. Wada, K. Saito, T. Tsurumi, Thin Solid Films 509, 13–17 (2006). https://doi.org/10.1016/j.tsf.2005.09.008

    Article  ADS  Google Scholar 

  7. D. Ma, X. Chen, G. Huang, J. Chen, H. Zhou, L. Fang, Ceram. Int. 41, 7157–7161 (2015). https://doi.org/10.1016/j.ceramint.2015.02.036

    Article  Google Scholar 

  8. Y.R. Zhang, T. Motohashi, Y. Masubuchi, S. Kikkawa, J. Eur. Ceram. Soi. 32, 1269–1274 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.12.001

    Article  Google Scholar 

  9. R. Singh, V. Luthra, R.S. Rawat, R.P. Tandon, Ceram. Int. 41, 4468–4478 (2015). https://doi.org/10.1016/j.ceramint.2014.11.139

    Article  Google Scholar 

  10. L. Guan, M. Li, X. Li, L. Feng, F. Teng, B. Liu, Z. Wei, C.B. Musgrave, Comput. Mater. Sci. 96, 223–228 (2015). https://doi.org/10.1016/j.commatsci.2014.09.026

    Article  Google Scholar 

  11. L. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, N.V. Dang, V.D. Lam, J. Appl. Phys. 112, 013909–014009 (2012). https://doi.org/10.1063/1.4733691

    Article  ADS  Google Scholar 

  12. A.P.A. Moraes, A.G.S. Filho, P.T.C. Freire, J.M. Filho, J.C. M’Peko, A.C. Hernandes, E. Antonelli, M.W. Blair, R.E. Muenchausen, L.G. Jacobsohn, W. Paraguassu, J. Appl. Phys. 109, 124102–124109 (2011). https://doi.org/10.1063/1.3594710

    Article  ADS  Google Scholar 

  13. P. Du, L. Luo, W. Li, Q. Yue, H. Chen, Appl. Phys. Lett. 104, 152902–152903 (2014). https://doi.org/10.1063/1.4871378

    Article  ADS  Google Scholar 

  14. N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, L.V. Hong, J. Appl. Phys. 111, 113913–114013 (2012). https://doi.org/10.1063/1.4725195

    Article  ADS  Google Scholar 

  15. X. Mu, Z. Shao, J. Zhang, L. Zhang, M. Jiang, H. Luo, W. ZhongAppl, Phys. Lett. 67, 2275–2277 (1995). https://doi.org/10.1063/1.115124

    Article  Google Scholar 

  16. J. Hou, L. Shi, Q. Zhu, J. Solid State Chem. 179, 1874–1878 (2006). https://doi.org/10.1016/j.jssc.2006.02.026

    Article  ADS  Google Scholar 

  17. J.J. Meléndez, Y.A. Zulueta, Y. Leyet, Ceram. Int. 41(B), 1647–1656 (2015). https://doi.org/10.1016/j.ceramint.2014.09.104

    Article  Google Scholar 

  18. J. Dai, P. Du, J. Xu, C. Xu, L. Luo, J. Rare Earths 33, 391–396 (2015). https://doi.org/10.1016/S1002-0721(14)60431-2

    Article  Google Scholar 

  19. L. Chen, X. Wei, X. Fu, Trans. Nonferrous Met. Soc. China 22, 1156–1160 (2012). https://doi.org/10.1016/S1003-6326(11)61299-5

    Article  Google Scholar 

  20. M.S. Ruiz, W.G. Fano, A.N. Faigón, A.C. Razzitte, Proc. Mater. Sci. 8, 641–648 (2015). https://doi.org/10.1016/j.mspro.2015.04.120

    Article  Google Scholar 

  21. I.N. Apostolova, A.T. Apostolov, S.G. Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 113, 203904 (2013). https://doi.org/10.1063/1.4807412

    Article  ADS  Google Scholar 

  22. H.L. Ju, C. Eylem, J.L. Peng, B.W. Eichhorn, R.L. Greene, Phys. Rev. B 49, 13335–13341 (1994). https://doi.org/10.1103/PhysRevB.49.13335

    Article  ADS  Google Scholar 

  23. T. Zhang, H. Liu, Z. Ma, C. Jiang, J. Alloys Compd. 37, 253–256 (2015). https://doi.org/10.1016/j.jallcom.2015.03.015

    Article  Google Scholar 

  24. Y. Guo, H. Shi, R. Ran, Z. Shao, Int. J. Hydrogen Energy 34, 9496–9504 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.053

    Article  Google Scholar 

  25. Y.I. Yuzyuk, R.A. Sakhovoy, O.A. Maslova, V.B. Shirokov, I.N. Zakharchenko, J. Belhadi, M. El Marssi, J. Appl. Phys. 116, 184102–184103 (2014). https://doi.org/10.1063/1.4901207

    Article  ADS  Google Scholar 

  26. P.R. Choudhury, S.B. Krupanidhi, J. Appl. Phys. 104, 114105–114205 (2008). https://doi.org/10.1063/1.3032739

    Article  ADS  Google Scholar 

  27. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.-L. Lhan, J. Appl. Phys. 110, 043914–044014 (2011). https://doi.org/10.1063/1.3625235

    Article  ADS  Google Scholar 

  28. L. Wu, L. Jiang, Y. Xu, X. Ding, J. Yao, Appl. Phys. Lett. 103, 191111–191114 (2013). https://doi.org/10.1063/1.4829479

    Article  ADS  Google Scholar 

  29. V. Železný, D. Chvostová, L. Pajasová, M. Jelínek, T. Kocourek, S. Daniš, V. Valvoda, Thin Solid Flms. 571, 416–419 (2014). https://doi.org/10.1016/j.tsf.2013.11.147

    Article  ADS  Google Scholar 

  30. B. Hadjarab, A. Bouguelia, A. Benchettara, M. Trari, J. Alloys Compd. 461, 360–366 (2008). https://doi.org/10.1016/j.jallcom.2007.06.091

    Article  Google Scholar 

  31. B.C. Luo, J. Zhang, J. Wang, P.X. Ran, Ceram. Int. 41, 2668–2672 (2015). https://doi.org/10.1016/j.ceramint.2014.10.080

    Article  Google Scholar 

  32. C.A. Vasilescu, M. Crişan, A.C. Ianculescu, M. Răileanu, M. Gartner, M. Anastasescu, N. Drăgan, D. Crişan, R. Gavrilă, R. Truşcă, Appl. Surf. Sci. 265(15), 510–518 (2013). https://doi.org/10.1016/j.apsusc.2012.11.036

    Article  ADS  Google Scholar 

  33. A.I. Lebedev, Phys. Solid State 51, 362–372 (2009). https://doi.org/10.1134/S1063783409020279

    Article  ADS  Google Scholar 

  34. L. Meng, H. Meng, W. Gog, W. Liu, Z. Zhang, Thin Solid Films 519, 7627–7631 (2011). https://doi.org/10.1016/j.tsf.2011.04.239

    Article  ADS  Google Scholar 

  35. Y. Badr, I.K. Battisha, A.M.S. El Nahrawy, B. Elouadi, M. Kamal, New J. Glass Ceram. 1, 71–78 (2011). https://doi.org/10.4236/njgc.2011.12012

    Article  Google Scholar 

  36. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004). https://doi.org/10.1021/jp036741e

    Article  Google Scholar 

  37. Z.R. Khan, M. Zulfequar, M.S. Khan, Sci. Eng. B 174, 145–149 (2010). https://doi.org/10.1016/j.mseb.2010.03.006

    Article  Google Scholar 

  38. M. Fadel, S.A. Fayek, M.O. Abou-Helal, M.M. Ibrahium, A.M. Shakra, J. Alloys Compd. 485, 604–609 (2009). https://doi.org/10.1016/j.jallcom.2009.06.057

    Article  Google Scholar 

  39. J. Aranda, J.L. Morenza, J. Esteve, J.M. Codina, Thin Solid Films 120, 23–30 (1984). https://doi.org/10.1016/0040-6090(84)90169-X

    Article  ADS  Google Scholar 

  40. A. Nayak, D.R. Rao, H.D. Banerjee, J. Mater. Sci. Lett. 10, 403 (1991). https://doi.org/10.1007/BF00728046

    Article  Google Scholar 

  41. K. Tanaka, Thin Solid Films 66, 271–279 (1980). https://doi.org/10.1016/0040-6090(80)90381-8

    Article  ADS  Google Scholar 

  42. A.M. Farid, I.K. El-Zawawi, A.H. Ammar, Vacuum 86, 1255–1261 (2012). https://doi.org/10.1016/j.vacuum.2011.11.010

    Article  ADS  Google Scholar 

  43. S.H. Wempl, M. DiDomenico Jr., Phys. Rev. Lett. 23, 1156–1160 (1969). https://doi.org/10.1103/PhysRevLett.23.1156

    Article  ADS  Google Scholar 

  44. E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto-Alcon, A. Ledesma, R. Jimenez-Garay, I. Márti, Mater. Chem. Phys. 60, 231–239 (1999). https://doi.org/10.1016/S0254-0584(99)00078-4

    Article  Google Scholar 

  45. A.B. Djurišić, E.H. Li, Opt. Commun. 157, 72–76 (1998). https://doi.org/10.1016/S0030-4018(98)00503-3

    Article  ADS  Google Scholar 

  46. A.I. Ali, A.H. Ammar, A. Abdel Moez, Superlattices Microstruct. 65, 285–298 (2014). https://doi.org/10.1016/j.spmi.2013.11.007

    Article  ADS  Google Scholar 

  47. A.I. Ali, J.Y. Son, A.H. Ammar, A. Abdel Moez, Y.S. Kim, Results Phys. 3, 167–172 (2013). https://doi.org/10.1016/j.rinp.2013.08.004

    Article  ADS  Google Scholar 

  48. A.A. Ziabari, F.E. Ghodsi, J. Alloys Compd. 509, 8748–8755 (2011). https://doi.org/10.1016/j.jallcom.2011.06.050

    Article  Google Scholar 

  49. S.M. Sze, Physics of Semiconductor Devices (Wiley-Inter Science, New York, 1969).

    Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Basic Science Department, Faculty of Industrial Education, Helwan University, Cairo, Egypt. Brain Pool Program (152S-3-3-1372) through the Korean Federation of Science and Technology Societies (KOFST), through the National Research Foundation of Korea (NRF), funded by Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdel Moez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moez, A.A., Kim, Y.S. & Ali, A.I. Investigation of structure, optical, nonlinear optical, dielectrical properties and electronic results of La0.01Ba0.99TiO3, Sm0.5Sr0.5CoO3 and Sm0.5Sr0.5CoO3/La0.01Ba0.99TiO3 thin films grown on quartz substrates using pulsed laser deposition (PLD) technique. J Opt 50, 330–340 (2021). https://doi.org/10.1007/s12596-021-00703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00703-0

Keywords

Navigation