Skip to main content
Log in

Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, SnO2@hard carbon nanocomposites were successfully prepared via a facile and cost-effective method that involved a one-pot hydrothermal treatment of a mixture of Sn4+, cellulose, and polyvinylidene fluoride (PVDF). Detailed material characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and N2 adsorption/desorption isotherms. The results reveal the presence of 4–5 nm SnO2 quantum dots that are uniformly anchored on nanosized hard carbon particles. Moreover, pyrolytic PVDF rendered a highly conductive carbon coating which reduced the hydroxyl and carboxyl groups and resulted in abundant micro- and meso-pores on the hard carbon surface. Then, the as-prepared carbon-coated SnO2@hard carbon nanocomposites are utilized as anode materials in Li-ion batteries, rendering a superior discharge capacity of > 600 mAh/g at a current density of 0.1A/g, a high initial coulombic efficiency of ~ 72%, and an excellent capacity retention of > 85% after 100 charge/discharge cycles. These results confirm that the as-prepared carbon-coated SnO2@hard carbon nanocomposite is a promising candidate to be used as an electrode for next-generation Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    CAS  Google Scholar 

  2. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011)

    CAS  Google Scholar 

  3. S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    CAS  Google Scholar 

  4. L. Arun, C. Karthikeyan, D. Philip, M. Sasikumar, E. Elanthamilan, J.P. Merlin, C. Unni, Effect of Ni2+ doping on chemocatalytic and supercapacitor performance of biosynthesized nanostructured CuO. J. Mater. Sci.-Mater. Electron. 29, 21180–21193 (2018)

    CAS  Google Scholar 

  5. E. Elanthamilan, A. Sathiyan, S. Rajkumar, E.J. Sheryl, J.P. Merlin, Polyaniline based charcoal/Ni nanocomposite material for high performance supercapacitors. Sustain. Energy Fuels 2, 811–819 (2018)

    CAS  Google Scholar 

  6. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    CAS  Google Scholar 

  7. X.S. Feng, Y. Huang, C. Li, Y. Li, C. Chen, P.B. Liu, Raspberry-like Ni/NiO/CoO/Mn3O4 hierarchical structures as novel electrode material for high-performance all-solid-state asymmetric supercapacitors. Ceram. Int. 45, 18273–18280 (2019)

    CAS  Google Scholar 

  8. J.L. Sun, Y. Wang, Y.F. Zhang, C.J. Xu, H.Y. Chen, Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances. Nanoscale Res. Lett. 14, 340 (2019)

    Google Scholar 

  9. H.Y. Chen et al., Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors. Int. J. Hydrog Energy 45, 3016–3027 (2020)

    Google Scholar 

  10. Y. Wang, X.Y. Ma, S.S. Li, J.L. Sun, Y.F. Zhang, H.Y. Chen, C.J. Xu, Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors. J. Alloys Compd. 818, 152905 (2020)

    Google Scholar 

  11. C. Lin, Y. Hu, F. Jiang, Preparation of ordered mesoporous carbon–SnO2 composite as electrodes for lithium batteries. Mater. Lett. 94, 83–85 (2013)

    CAS  Google Scholar 

  12. J.H. Um, S.H. Yu, Y.H. Cho, SnO2 nanotube arrays embedded in a carbon layer for high-performance lithium-ion battery applications. New J. Chem. 39, 2541–2546 (2015)

    CAS  Google Scholar 

  13. W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries. Chin. Chem. Lett. 1, 124–128 (2015)

    Google Scholar 

  14. J. Park, J.W. Park, J.W. Han, Charge-discharge properties of tin dioxide for sodium-ion battery. Mater. Res. Bull. 58, 186–189 (2014)

    CAS  Google Scholar 

  15. W.L. Wei, P.C. Du, D. Liu, Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries. J. Colloid Interface Sci. 503, 205–213 (2017)

    CAS  Google Scholar 

  16. I. Courtney, J.R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc. 144, 2045–2051 (1997)

    CAS  Google Scholar 

  17. H. Liu, D. Long, X. Liu, Facile synthesis and superior anodic performance of ultrafine SnO2-containing nanocomposites. Electrochim. Acta 54, 5782–5788 (2009)

    CAS  Google Scholar 

  18. S.D. Seo, G.H. Lee, D.W. Kim, Three-dimensional hybrid tin oxide/carbon nanowire arrays for high-performance Li ion battery electrodes. Nanotechnology 10, 10588–10591 (2016)

    Google Scholar 

  19. Z. Li, J. Zhang, Y. Zhang, H. Zhang, J. Wang, Z. Li, Carbon-coated SnO2 thin films developed by magnetron sputtering as anode material for lithium-ion batteries. RSC Adv. 128, 106258–106264 (2015)

    Google Scholar 

  20. L.N. Yang, K.X. Chen, T. Dong, One-pot synthesis of SnO2/C nanocapsules composites as anode materials for lithium-ion batteries. J. Nanosci. Nanotechnol. 16, 1768–1774 (2016)

    CAS  Google Scholar 

  21. S. Abouali, M. AkbariGarakani, J.K. Kim, Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochim. Acta 284, 436–443 (2018)

    CAS  Google Scholar 

  22. H.X. Zhang, C. Feng, Y.C. Zhai, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high capacity anode material for lithium-ion batteries. Adv. Mater. 21, 2299–2304 (2009)

    CAS  Google Scholar 

  23. P. Wu, D. Du, H. Zhang, J. Yu, D. Yang, CNTs@ SnO2@HC coaxial nanocables with highly reversible lithium storage. J. Phys. Chem. C 114, 22535–22538 (2010)

    CAS  Google Scholar 

  24. S. Ding, J.S. Chen, X.W. Lou, CNTs@ SnO2@HC coaxial nanocables with high mass fraction of SnO2 for improved lithium storage. Chem-Asian J. 6, 2278–2281 (2011)

    CAS  Google Scholar 

  25. Z.F. Li, O. Liu, Y.D. Liu, L. Xin, F. Yang, Y. Zhou, H.Y. Zhang, Facile preparation of graphene/SnO2 xerogel hybrids as the anode material in Li-ion batteries. Acs Appl. Mater. Int. 49, 27087–27095 (2015)

    Google Scholar 

  26. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49, 133–139 (2011)

    CAS  Google Scholar 

  27. Y.K. Wang, Y.S. Liu, J.M. Zhang, Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors. J. Nanopart. Res. 17, 420–429 (2015)

    Google Scholar 

  28. M. Sahoo, S. Ramaprabhu, Solar synthesized tin oxide nanoparticles dispersed on graphene wrapped carbon nanotubes as a Li ion battery anode material with improved stability. RSC Adv. 7, 13789–13797 (2017)

    CAS  Google Scholar 

  29. K. Gotoh, M. Maeda, A. Nagai, Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by 7Li NMR. J. Power Sources 162, 1322–1328 (2006)

    CAS  Google Scholar 

  30. H.S. Ju, Y.J. Hong, J.S. Cho, Y.C. Kang, Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries. Carbon 100, 137–141 (2016)

    CAS  Google Scholar 

  31. Y.Y. Li, H.Y. Zhang, Y.M. Chen, Z. Shi, P.K. Shen, Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 197–207 (2016)

    CAS  Google Scholar 

  32. L.F. Li, C.L. Fan, Y.C. Tang, B. Zeng, Synthesis and characterization of PVDF coated cotton derived hard carbon for anode of Li-ion batteries. Int. J. Energy Res. 43, 4987–4994 (2019)

    CAS  Google Scholar 

  33. Q.H. Tian, F. Zhang, W. Zhang, L. Yang, Non-smooth carbon coating porous SnO2 quasi- nanocubes towards high lithium storage. Electrochim. Acta 307, 393–402 (2019)

    CAS  Google Scholar 

  34. V. Vo, T.X.T. Nguyen, Y.S. Jin, T.G. Ly, T.G. Nguyen, T.Q. Duong, SnO2, nanosheets/g-C3N4, composite with improved lithium storage capabilities. Chem. Phys. Lett. 674, 42–47 (2017)

    CAS  Google Scholar 

  35. M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012)

    CAS  Google Scholar 

  36. X.Q. Zhang, X.X. Huang, X.D. Zhang, L. Xia, Cotton/rGO/carbon-coated SnO2 nano particle-composites as superior anode for Lithium ion battery. Mater. Design 114, 234–242 (2017)

    CAS  Google Scholar 

  37. L.Y. Wang, Y. Leconte, Z.X. Feng, Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29, 1603286 (2017)

    Google Scholar 

  38. Z.Y. Zhang, L. Wang, J. Xiao, One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties. ACS Appl. Mater. Int. 7, 17963 (2015)

    CAS  Google Scholar 

  39. C. Xu, J. Sun, L. Gao, Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale 4, 5425 (2012)

    CAS  Google Scholar 

  40. L. Wang, D. Wang, Z. Dong, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett. 13, 1711 (2013)

    CAS  Google Scholar 

  41. B.P. Vinayan, S. Ramaprabhu, Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. J. Mater. Chem. A 1, 3865 (2013)

    CAS  Google Scholar 

  42. L.F. Li, C.L. Fan, B. Zeng, M.C. Tan, Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose. Mater. Chem. Phys. 242, 122380 (2020)

    Google Scholar 

  43. T. Zheng, J.S. Xue, J.R. Dahn, Lithium insertion in hydrogen containing carbonaceous materials. Chem. Mater. 8, 389–393 (1996)

    CAS  Google Scholar 

  44. N. Takami, A. Satoh, T. Ohsaki, Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis lithium insertion and extraction for high-capacity disordered carbons with large hysteresis. Electrochim. Acta 42, 2537–2543 (1997)

    CAS  Google Scholar 

  45. N.J. Loader, F.A. Street-Perrott, T.J. Daley, P.D.M. Hughes, Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose. Anal. Chem. 87, 376–380 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 51802096, 51672079, 51972104), the Scientific Research Project of Technology Department of Changde Government (2018G051), and Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changling Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yuan, Z., Fan, R. et al. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries. J Mater Sci: Mater Electron 31, 6449–6460 (2020). https://doi.org/10.1007/s10854-020-03200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03200-5

Navigation