Skip to main content
Log in

The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped PVA and Zinc iodide (ZnI2) inorganic salt doped PVA with different ZnI2 (1–37) wt% percentages are novel composite polymer dielectric films have been successfully prepared by the solution cast method. The developed dielectric films were characterized by analyzing the physicochemical phenomenon to study the effect of ZnI2 inorganic salt concentrations. The XRD histogram explicated the being semi-crystalline nature of PVA polymeric matrix with ZnI2 inorganic salt doping. The optical UV–Vis–NIR characteristics of the composite dielectric films were measured. The effect of ZnI2 inorganic salt loading contents increasing on opto-electrical properties such as transmittance, Absorbance, optical band gap in addition to the AC impedance spectroscopy was studied in the polymer composite dielectric film. The modifications in the optical properties of PVA film are attributed to the interaction between the salt molecules and the PVA matrix. The frequency dependent AC\DC electric conductivity at different ZnI2 content follows and obeyed the Jonscher’s universal power law. The data of AC impedance spectroscopy is to map ready the complex generalization of resistance that includes capacitive and inductive effects of the polymer composite dielectrics as a function of the angular frequency. These films with excellent optoelectronic phenomenon beside appreciable flexibilities aid their claims as multifunctional UV shielding devices with enhanced a character of semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.S. Yahia, A. Bouzidi, H.Y. Zahran, W. Jilani, S. AlFaify, H. Algarni, H. Guermazi, J. Mol. Struct. 1156, 492–500 (2018)

    Article  Google Scholar 

  2. M.M. Abutalib, I.S. Yahia, J. Mater. Sci. Mater. El. (2018). https://doi.org/10.1007/s10854-018-0106-x

    Google Scholar 

  3. G. Sreekumar, P.G. Louie Frobel, S. Sreeja, S.R. Suresh, S. Mayadevi, C.I. Muneera, C.S.S. Sandeep, R. Philip, C. Mukharjee, Chem. Phys. Lett. 506, 61 (2011)

    Article  Google Scholar 

  4. S. Matsumoto, K.I. Kubodera, T. Kurihara, T. Kaino, Opt. Comm. 76, 147 (1990)

    Article  Google Scholar 

  5. B. Karthikeyan, M. Anija, P. Venkatesan, C.S.S. Sandeep, R. Philip, Opt. Commun. 280, 482 (2007)

    Article  Google Scholar 

  6. B. Karthikeyan, M. Anija, R. Philip, Appl. Phys. Lett. 88, 053104 (2006)

    Article  Google Scholar 

  7. V. Krishnakumar, G. Shanmugam, R. Nagalakshmi, J. Phys. D Appl. Phys. 45, 165102 (2012)

    Article  Google Scholar 

  8. J. He, W. Ji, G.H. Ma, S.H. Tang, E.S.W. Kong, S.Y. Chow, X.H. Zhang, Z.L. Hua, J.L. Shi, J. Phys. Chem. B 109, 4373 (2005)

    Article  Google Scholar 

  9. Z. Qiao, Y. Xie, G. Li, Y. Zhu, Z. Qian, Mater. Sci. 35, 285 (2000)

    Article  Google Scholar 

  10. S. Patachia, Blends based on poly(vinyl alcohol) and the products based on this polymer, in Handbook of polymer blends and composites, ed. by C. Vasile, A.K. Kulshreshtha (Rapra Technology, Shawbury, 2003), pp. 288–365

    Google Scholar 

  11. S. Patachia, A.J.M. Valente, A. Papancea, V.M.M.V. Lobo, Poly(vinyl alcohol) [PVA]-based polymer membranes: synthesis and applications, in Organic and physical chemistry using chemical kinetics, ed. by Y.G. Medvedevskikh, A. Valente, R.A. Howell, G.E. Zaikov (Nova Publishers, New York, 2007), pp. 103–166

    Google Scholar 

  12. R.D.K. Misra, P. Nerikar, K. Bertrand, D. Murphy, Mater. Sci. Eng. A 384, 284 (2004)

    Article  Google Scholar 

  13. L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/243947

    Google Scholar 

  14. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)

    Google Scholar 

  15. P. Potschke, S.M. Dudkin, I. Alig, Polym. 44, 5023 (2003)

    Article  Google Scholar 

  16. M.F.H. AL-Kadhemy, A.N.A. AL-Jabry, Int. J. Mat. Sci. Innov. 2(6), 178 (2014)

    Google Scholar 

  17. P.M. Buschbaum, Adv. Mater. 26, 7692 (2014)

    Article  Google Scholar 

  18. R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B.D. Boer, Polym. Rev. 48, 531 (2008)

    Article  Google Scholar 

  19. C. Kanimozhi, P. Balraju, G.D. Sharma, S. Patil, J. Phys. Chem. B 114, 3095 (2010)

    Article  Google Scholar 

  20. E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El-Mansy, Optik. 123, 1161 (2012)

    Article  Google Scholar 

  21. K. Sumida, K. Hiramatsu, W. Sakamoto, T. Yogo, J. Nanopart. Res. 9, 225 (2007)

    Article  Google Scholar 

  22. X. Qin, W. Xia, R. Sinko, S. Keten, Nano Lett. 15, 6738 (2015)

    Article  Google Scholar 

  23. C. Uma Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167 (2002)

    Article  Google Scholar 

  24. F.H.M. Al-Kadhemy, W.H. Abaas, Atti Della Fondazione Giorgio Ronchi. 3, 359 (2012)

    Google Scholar 

  25. H.M. Zidon, A. Tawansi, M. Abu-Elnader, Phys. B 339, 78 (2003)

    Article  Google Scholar 

  26. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K. Pasha, A. Bhagat, Polym. Plast. Technol. Eng. 55, 231 (2016)

    Article  Google Scholar 

  27. T. Martins, R. Weiss, T. Atvars, J. Braz. Chem. Soc. 19, 1450 (2008)

    Article  Google Scholar 

  28. Z. Khodair, M. Saeed, H.A. Allah, Iraq. J. Phys. 12, 47 (2018)

    Google Scholar 

  29. S.M. El-Bashir, I.S. Yahia, M.A. Binhussain, M.S. AlSalhi, Result Phys. 7, 1238 (2017)

    Article  Google Scholar 

  30. I.S. Yahia, S.M.A.S. Keshk, Opt. Laser Technol. 90, 197 (2017)

    Article  Google Scholar 

  31. W. Al-Taay, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Int. J. Polym. Sci. 2014, 697809 (2014)

    Google Scholar 

  32. T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spect. 2015, 204867 (2015)

    Google Scholar 

  33. K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, RSC Adv. 7, 15084 (2017)

    Article  Google Scholar 

  34. M. Wu, H.Z. Jiao, Z. Li, Y. San, Colloid Surf A Physicochem. Eng. Aspects 313, 35 (2008)

    Article  Google Scholar 

  35. H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495 (2007)

    Article  Google Scholar 

  36. P.P.H. Fourcry, D. Carre, J. Rivet, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. B34, 3160 (1978)

    Article  Google Scholar 

  37. K. Hilpert, L. Bencivenni, B. Saha, J. Chem. Phys. 83, 5227 (1985)

    Article  Google Scholar 

  38. Y.V. Cantu, R. Hauge, L. Norman, W.E. Billups, J. Appl. Polym. Sci. 89, 1250 (2003)

    Article  Google Scholar 

  39. W.P. Hagan, R.J. Latham, R.G. Linford, S.L. Vickers, Solid State Ion. 7071, 666 (1994)

    Article  Google Scholar 

  40. M. Kurumova, D. Lopez, R. Benavente, C. Mijangos, J.M. Perena, Polym. 41, 9265 (2000)

    Article  Google Scholar 

  41. A. Schejn, L. Balan, V. Falk, L. Aranda, Gh Medjahdi, R. Schneider, Cryst. Eng. Commun. 16, 4493 (2014)

    Article  Google Scholar 

  42. F. Yakuphanoglu, M. Sekerci, E. Evin, Phys. B 382, 21 (2006)

    Article  Google Scholar 

  43. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bull. 51, 438 (2014)

    Article  Google Scholar 

  44. P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, A.C.S. Appl, Mater. Interface 3, 3638 (2011)

    Article  Google Scholar 

  45. P. Singh, A. Kaushal, D. Kaur, J. Alloy. Compd. 471, 11 (2009)

    Article  Google Scholar 

  46. R.M. Ahmed, Int. J. Photoenergy 2009, 7 (2009). https://doi.org/10.1155/2009/150389

    Article  Google Scholar 

  47. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectrics, London, 1993)

    Google Scholar 

  48. P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, J. Non-Cryst. Solid. 351, 583 (2005)

    Article  Google Scholar 

  49. A.B. Afzal, M.J. Akhtar, M. Nadeem, M. Ahmad, M.M. Hassan, T. Yasin, M. Mehmood, J. Phys. D Appl. Phys. 42, 015411 (2009)

    Article  Google Scholar 

  50. N.M. Kocherginsky, Z. Wang, Synth. Met. 156, 1065 (2006)

    Article  Google Scholar 

  51. S. More, R. Dhokne, S. Mohari, Mater. Res. Express 4, 055302 (2017)

    Article  Google Scholar 

  52. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Polym. Lett. 2, 638 (2008)

    Google Scholar 

Download references

Acknowledgement

The authors express their appreciation to “The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University for funding this work under Grant Number RCAMS/KKU/008-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouzidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, A., Jilani, W., Guermazi, H. et al. The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance. J Mater Sci: Mater Electron 30, 11799–11806 (2019). https://doi.org/10.1007/s10854-019-01552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01552-1

Navigation