Skip to main content
Log in

Highly Precise Determination of Structural and Optical Parameters of an Innovative (PVA-VOCl) for Flexible Polymer-Semiconductor Devices

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A novel polymer-semiconductor nanocomposites of polyvinyl alcoholoxovanadium chloride (PVA-VOCl) films have been successfully synthesized by the simple solution casting technique. XRD analysis of the prepared films confirms the formation of VOCl nanocrystals with different particle sizes distributed in the PVA polymer resulting in the increment in the crystalline phase of the whole structure of PVA-VOCl polymer nanocomposite. The Fourier transform infrared (FT-IR) spectroscopy measurements indicate the distribution of VOCl in the polymer matrix. The optical absorption spectra measurements exhibit a complete blocking of the UV range (200–400 nm) due to VOCl dispersion in the polymer matrix. The optical gap Eg of the films were determined with a high degree of precision using Tauc relation, Absorption spectra fitting and the new accurate geometric method show a strong decrease from 5.2 eV for pure PVA to 2.85 eV with increasing the VOCl level in the polymer film. In addition, the high-frequency refractive index estimated from the optical gap values exhibits a significant increase from 1.70 to 2.07. Our samples can be considered as an innovative flexible optical material for UV filters, optoelectronics, and photonics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Mahmoud and A. A. Al-Ghamdi, Polym. Int., 59, 1282 (2010).

    Article  CAS  Google Scholar 

  2. K. S. Hemalatha and K. Rukmani, RSC Adv., 6, 74354 (2016).

    Article  CAS  Google Scholar 

  3. K. Deshmukh, M. B. Ahamed, R. R. Deshmukh, S. K. Khadheer Pasha, K. K. Sadasivuni, D. Ponnamma, and K. Chidambaram, Eur. Polym. J, 76, 14 (2016).

    Article  CAS  Google Scholar 

  4. A. K. Bajpai, A. Goswami, J. Bajpai, and B. K. Sinha, Macromol. Res., 26, 305 (2018).

    Article  CAS  Google Scholar 

  5. F. M. Ali, I. M. Ashraf, and S. M. Alqahtani, Phys. B Condens. Matter, 527, 24 (2017).

    Article  CAS  Google Scholar 

  6. S. Ningaraju, A. P. Gnana Prakash, and H. B. Ravikumar, Solid State Ionics, 320, 132 (2018).

    Article  CAS  Google Scholar 

  7. A. Hassen, A. M. El Sayed, W. M. Morsi, and S. El-Sayed, J. Appl. Phys., 112 (2012).

  8. M. Sonmez, D. Ficai, A. Stan, C. Bleotu, L. Matei, A. Ficai, and E. Andronescu, Mater. Lett., 74, 132 (2012).

    Article  CAS  Google Scholar 

  9. Y. Luo, X. Jiang, W. Zhang, and X. Li, Polym. Polym. Compos., 23, 555 (2015).

    CAS  Google Scholar 

  10. M. A. Hassan, M. E. Gouda, and E. Sheha, J. Appl. Polym. Sci., 116, 1213 (2010).

    CAS  Google Scholar 

  11. K. N. Kumar, R. Padma, Y. C. Ratnakaram, and M. Kang, RSC Adv., 7, 15084 (2017).

    Article  CAS  Google Scholar 

  12. F. M. Ali and F. Maiz, Phys. B Condens. Matter, 530, 19 (2018).

    Article  CAS  Google Scholar 

  13. P. Gao, M. A. Reddy, X. Mu, T. Diemant, L. Zhang, Z. Zhao-Karger, V. S. K. Chakravadhanula, O. Clemens, R. J. Behm, and M. Fichtner, Angew. Chem. Int. Ed., 55, 4285 (2016).

    Article  CAS  Google Scholar 

  14. J. Ramesh Babu and K. Vijaya Kumar, Int. J. ChemTech Res., 7, 171 (2014).

    Google Scholar 

  15. N. S. Alatawi, A. M. Abdelghany, and N. H. Elsayed, Rjpbcs, 8, 263 (2017).

    CAS  Google Scholar 

  16. O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, Results Phys., 6, 1103 (2016).

    Article  Google Scholar 

  17. F. M. Ali, J. Inorg. Organomet. Polym. Mater., DOI: https://doi.org/10.1007/s10904-019-01386-8 (2019).

  18. M. Banerjee, A. Jain, and G. S. Mukherjee, Polym. Compos., 40, E765 (2019).

    Article  CAS  Google Scholar 

  19. G. R. Suma, N. K. Subramani, K. N. Shilpa, S. Sachhidananda, and S. V. Satyanarayana, J. Mater. Sci. Mater. Electron., 28, 10707 (2017).

    Article  CAS  Google Scholar 

  20. R. M. Ahmed, Int. J. Mod. Phys. B, 28, 1450036 (2014).

    Article  Google Scholar 

  21. S. B. Aziz, A. Q. Hassan, S. J. Mohammed, W. O. Karim, M. F. Z. Kadir, H. A. Tajuddin, and N. N. M. Y. Chan, Nanomaterials, 9, 216 (2019).

    Article  CAS  Google Scholar 

  22. T. Yoshinaga, Y. Iso, T. Isobe, ECS J. Solid State Sci. Technol., 7, R3034 (2018).

    Article  CAS  Google Scholar 

  23. R. S. Al-Faleh and A. M. Zihlif, Phys. B Condens. Matter, 406, 1919 (2011).

    Article  CAS  Google Scholar 

  24. S. Asha, Y. Sangappa, and S. Ganesh, J. Spectrosc., 2015, 879296/1–7 (2015).

    Google Scholar 

  25. I. R. Agool and A. Hashim, Aust. J. Basic Appl. Sci., 8, 564 (2014).

    CAS  Google Scholar 

  26. F. M. Ali, I. S. Yahia, and M. A. Sayed, Optik (Stuttg)., 192, 1 (2019).

    Google Scholar 

  27. I. A. Al-saidi and F. Sadik, Adv. Mater. Phys. Chem., 6, 120 (2016).

    Article  CAS  Google Scholar 

  28. G. Patel, M. B. Sureshkumar, and P. Patel, Soft, 4, 9 (2015).

    Article  Google Scholar 

  29. B. M. Baraker and B. Lobo, J. Polym. Res., 24, 84 (2017).

    Article  Google Scholar 

  30. K. S. Ojha, Opt. Int. J. Light Electron Opt., 127, 2586 (2016).

    Article  CAS  Google Scholar 

  31. B. Chana and R. Kumar, J. Macromol. Sci. Part B: Phys., 56, 863 (2017).

    Article  CAS  Google Scholar 

  32. S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, J. Mater. Sci. Mater. Electron., 26, 8022 (2015).

    Article  CAS  Google Scholar 

  33. S. B. Aziz, M. A. Rasheed, A. M. Hussein, and H. M. Ahmed, Mater. Sci. Semicond. Proc., 71, 197 (2017).

    Article  CAS  Google Scholar 

  34. O. G. Abdullah, Y. A. K. Salman, and S. A. Saleem, Phys. Mater. Chem., 3, 18 (2015).

    Google Scholar 

  35. K. M. Kaky, G. Lakshminarayana, S. O. Baki, Y. H. Taufiq-Yap, I. V. Kityk, and M. A. Mahdi, J. Non-Cryst. Solids, 456, 55 (2017).

    Article  CAS  Google Scholar 

  36. L. Escobar-Alarcón, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, Appl. Surf. Sci., 254, 412 (2007).

    Article  Google Scholar 

  37. Y. S. Rammah, A. S. Abouhaswa, M. I. Sayyed, H. O. Tekin, and R. El-Mallawany, J. Non-Cryst. Solids, 509, 99 (2019).

    Article  CAS  Google Scholar 

  38. A. A. Ali, Y. S. Rammah, R. El-Mallawany, and D. Souri, Meas. J. Int. Meas. Confed., 105, 72 (2017).

    Article  Google Scholar 

  39. N. Ghobadi, Int. Nano Lett., 3, 2 (2013).

    Article  Google Scholar 

  40. N. M. Ravindra, P. Ganapathy, and J. Choi, Infrared Phys. Technol., 50, 21 (2007).

    Article  CAS  Google Scholar 

  41. V. Dimitrov and T. Komatsu, J. Univ. Chem. Technol. Metallurgy, 45, 219 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayez M. Ali.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: Authors would like to express their gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F.M., Maiz, F. Highly Precise Determination of Structural and Optical Parameters of an Innovative (PVA-VOCl) for Flexible Polymer-Semiconductor Devices. Macromol. Res. 28, 805–812 (2020). https://doi.org/10.1007/s13233-020-8100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8100-6

Keywords

Navigation