Skip to main content
Log in

Optical Analysis and UV-Blocking Filter of Cadmium Iodide-Doped Polyvinyl Alcohol Polymeric Composite Films: Synthesis and Dielectric Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymer electrolyte films containing polyvinyl alcohol (PVA) with various CdI2 inorganic salt contents are prepared using an ultrasonic wave and a casting method for studying the effect of cadmium iodide (CdI2) additions on the microstructure, optic and dielectric characteristics of the PVA film. Incorporating CdI2 inorganic salt affects the microstructural parameters of the proposed films. UV–Vis–NIR optical spectroscopy explores the influence of the inorganic CdI2 salt content on the optical characteristics. For 3.7 wt% CdI2 inorganic salt sample, each of the materials is a possible candidate for UV-shielding applications, the prepared polymeric electrolyte films begin a blocking light between 190 and 276 nm of UV–Vis light. The gap energy in the visible region attributes to a reduction in the size of the crystallite, with increasing CdI2 concentrations. The band gaps enhance the behavior of light absorption and the materials examined were suited for optical UV protection systems. The ionic conductivity of the polymer electrolyte films is studied as a function of the added CdI2 inorganic salt. The AC impedance in PVA polymeric electrolyte film behaviors also depends on the incorporation of CdI2 inorganic salt which improves their dielectric parameters. CdI2/PVA composite films showed a new trend in the electrical and optical behavior for many applications especially UVC light blocking.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Rajendran, M. Sivakumar, R. Subadevi, Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 124, 225–230 (2003). https://doi.org/10.1016/S0378-7753(03)00591-3

    Article  CAS  Google Scholar 

  2. A. Tawansi, A. El-Khodary, M.M. Abdelnaby, A study of the physical properties of FeCl3 filled PVA. Curr. Appl. Phys. 5, 572–578 (2005). https://doi.org/10.1016/j.cap.2004.06.026

    Article  Google Scholar 

  3. T. Podgrabinski, V. Svorcik, A. Mackova, V. Hnatowicz, P. Sajdl, Dielectric properties of doped polystyrene and polymethylmethacrylate. J. Mater. Sci. 17, 871–875 (2006). https://doi.org/10.1007/s10854-006-0040-1

    Article  CAS  Google Scholar 

  4. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym. Plast. Technol. Eng. 55, 231–241 (2016). https://doi.org/10.1080/03602559.2015.1055499

    Article  CAS  Google Scholar 

  5. C.U. Devi, A.K. Sharma, V.V.R. Narasimha Rao, Electrical and optical properties of pure and silver nitratedoped polyvinyl alcohol films. Mater. Lett. 56, 167–174 (2002). https://doi.org/10.1016/S0167-577X(02)00434-2

    Article  CAS  Google Scholar 

  6. A. Krkljes, J.M. Nedeljkovic, Z. Kacarevic-Popovic, Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym. Bull. 58, 271–279 (2007). https://doi.org/10.1007/s00289-006-0593-4

    Article  CAS  Google Scholar 

  7. F.F. Muhammad, S.B. Aziz, S.A. Hussein, Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. 26, 521–529 (2015). https://doi.org/10.1007/s10854-014-2430-0

    Article  CAS  Google Scholar 

  8. M.B.N. Prakash, G.K. Urs, R. Somashekar, Functional data analysis of experimental parameters obtained in PVA doped CdCl2 polymer composites. AIP Conf. Proc. 1731, 070031–70034 (2016). https://doi.org/10.1063/1.4947863

    Article  CAS  Google Scholar 

  9. J. Zhu, Q. Li, Y. Che, X. Liu, C. Dong, X. Chen, C. Wang, Effect of Na2CO3 on the microstructure and macroscopic properties and mechanism analysis of PVA/CMC composite film. Polymers 12(2020), 453 (2020). https://doi.org/10.3390/polym12020453

    Article  PubMed Central  CAS  Google Scholar 

  10. A. Bouzidi, W. Jilani, H. Guermazi, I.S. Yahia, H.Y. Zahran, G.B. Sakr, The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance. J. Mater. Sci. 30, 11799–11806 (2019). https://doi.org/10.1007/s10854-019-01552-1

    Article  CAS  Google Scholar 

  11. W. Jilani, A. Bouzidi, I.S. Yahia, H. Guermazi, H.Y. Zahran, G. Saker, Effect of organic inorganics on structural properties, linear optics and impedance spectroscopy of methyl orange (C.I. acid orange 52) doped polyvinyl alcohol composite thin films. J. Mater. Sci. 29, 16446–16453 (2018). https://doi.org/10.1007/s10854-018-9736-2

    Article  CAS  Google Scholar 

  12. N. Sabry, M.I. Mohammed, I.S. Yahia, Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications. Mater. Res. Express 6, 115339 (2019). https://doi.org/10.1088/2053-1591/ab4c24

    Article  Google Scholar 

  13. M.B.N. Prakash, A. Manjunath, R. Somashekar, Studies on AC electrical conductivity of CdCl2 doped PVA polymer electrolyte. Adv. Cond. Matter. Phys. (2013). https://doi.org/10.1155/2013/690629

    Article  Google Scholar 

  14. H. Wang, P. Fang, Z. Chen, S. Wang, Synthesis and characterization of CdS/PVA nanocomposite films. Appl. Surf. Sci. 253, 8495–8499 (2007). https://doi.org/10.1016/j.apsusc.2007.04.020

    Article  CAS  Google Scholar 

  15. F. Hulliger, Structural chemistry of layer-type phases (Lévy Francis, Holland, 1976)

    Book  Google Scholar 

  16. S. Kondo, S. Kagawa, T. Saito, Amorphous CdI2 films and their crystallization studied by simultaneous measurements of optical absorption and reflection. Jpn. J. Appl. Phys. 32, 5596–5600 (1993). https://doi.org/10.1143/JJAP.32.5596

    Article  CAS  Google Scholar 

  17. İ.A. Kariper, Structural, optical and porosity properties of CdI2 thin film. J. Mater. Res. Technol. 5, 77–83 (2016). https://doi.org/10.1016/j.jmrt.2015.10.005

    Article  CAS  Google Scholar 

  18. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J. Therm. Anal. Calorim. 135, 2089–2100 (2019). https://doi.org/10.1007/s10973-018-7347-z

    Article  CAS  Google Scholar 

  19. S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018). https://doi.org/10.1016/j.jpcs.2018.02.003

    Article  CAS  Google Scholar 

  20. I.S. Yahia, H.Y. Zahran, F.H. Alamri, Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties. Synth. Met. 218, 19–26 (2016). https://doi.org/10.1016/j.synthmet.2016.04.024

    Article  CAS  Google Scholar 

  21. O. Kaygilia, S. Keserb, T. Atesa, S. Keser, A.A. Al-Ghamdi, F. Yakuphanoglu, Controlling of dialectical properties of hydroxyapatite bye thylene diaminete traaceticacid (EDTA) for bone healing applications. Spectrochim. Acta A 129, 268–273 (2014). https://doi.org/10.1016/j.saa.2014.03.082

    Article  CAS  Google Scholar 

  22. A. Tataroglu, S. Altındal, M.M. Bulbul, Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron. Eng. 81, 140–149 (2005). https://doi.org/10.1016/j.mee.2005.04.008

    Article  CAS  Google Scholar 

  23. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectrics, London, 1993)

    Google Scholar 

  24. J. Koteswararao, R. Abhishek, S.V. Satyanarayana, G.M. Madhu, V. Venkatesham, Influence of cadmium sulfide nanoparticles on structural and electrical properties of polyvinyl alcohol films. Express Polym. Lett. 10(11), 883–894 (2016). https://doi.org/10.3144/expresspolymlett.2016.83

    Article  CAS  Google Scholar 

  25. I.S. Yahia, S.M.A.S. Keshk, Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Opt. Laser Technol. 90, 197–200 (2017). https://doi.org/10.1016/j.optlastec.2016.10.008

    Article  CAS  Google Scholar 

  26. S. Divakara, S. Madhu, R. Somashekar, Stacking faults and microstructural parameters in non-mulberry silk fibres. Pramana J. Phys. 73, 927–938 (2009). https://doi.org/10.1007/s12043-009-0159-8

    Article  CAS  Google Scholar 

  27. I.H. Hall, R. Somashekar, Determination of crystal size and disorder fromthe X-ray diffraction photograph of polymer fibres. 2. Modelling intensity profiles. J. Appl. Cryst. 24, 1051–1059 (1991). https://doi.org/10.1107/S0021889891007707

    Article  CAS  Google Scholar 

  28. R. Somashekar, I.H. Hall, P.D. Carr, The determination of crystal size and disorder from X-ray diffraction photographs of polymer fibres. 1. The accuracy of determination of Fourier coefficients of the intensity profile of a reflection. J. Appl. Cryst. 22, 363–371 (1989). https://doi.org/10.1107/S0021889889004085

    Article  CAS  Google Scholar 

  29. R. Somashekar, H. Somashekarappa, X-ray diffraction-line broadening analysis: paracrystalline method. J. Appl. Cryst. 30, 147–152 (1997). https://doi.org/10.1107/S0021889896010023

    Article  CAS  Google Scholar 

  30. Y.P. Venkata Subbaiah, P. Prathap, K.T. Ramakrishna Reddy, Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci. 253, 2409–2415 (2006). https://doi.org/10.1016/j.apsusc.2006.04.063

    Article  CAS  Google Scholar 

  31. S. Velumani, X. Mathew, P.J. Sebastian, S.K. Narayandass, D. Mangalaraj, Structural and optical properties of hot wall deposited CdSe thin films. Sol. Energy Mat. Sol. C 76, 347–358 (2003). https://doi.org/10.1016/S0927-0248(02)00287-8

    Article  CAS  Google Scholar 

  32. A. Leonardi, M. Leoni, S. Siboni, P. Scardi, Common volume functions and diffraction line profiles of polyhedral domains. J. Appl. Cryst. 45, 1162–1172 (2012). https://doi.org/10.1107/S0021889812039283

    Article  CAS  Google Scholar 

  33. S.H. Deshmukh, D.K. Burghate, S.N. Shilaska, P.T. Deshmukh, Optical properties of polyaniline doped PVC-PMMA thin films. Indian J. Pure Appl. Phys. 46, 344–348 (2008)

    CAS  Google Scholar 

  34. M. Abdelaziz, M.M. Ghannam, Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. B 405(3), 958–964 (2010). https://doi.org/10.1016/j.physb.2009.10.030

    Article  CAS  Google Scholar 

  35. F. Yakuphanoglu, M. Sekerci, E. Evin, The determination of the conduction mechanism and optical band gap of fluorescein sodium salt. Phys. B 382, 21–25 (2006). https://doi.org/10.1016/j.physb.2006.01.511

    Article  CAS  Google Scholar 

  36. K.S. Hemalatha, K. Rukmani, Concentration dependent dielectric, AC conductivity and sensing study of ZnO-polyvinyl alcohol nanocomposite films. Int. J. Nanotechnol. 14, 961–973 (2017). https://doi.org/10.1504/IJNT.2017.086778

    Article  CAS  Google Scholar 

  37. P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles. ACS Appl. Mater. Interf. 3, 3638–3645 (2011). https://doi.org/10.1021/am200841n

    Article  CAS  Google Scholar 

  38. P. Singh, A. Kaushal, D. Kaur, Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis. J. Alloy. Compd. 471, 11–15 (2009). https://doi.org/10.1016/j.jallcom.2008.03.123

    Article  CAS  Google Scholar 

  39. R.M. Ahmed, Optical study on poly (methyl methacrylate)/poly(vinyl acetate) blends. Int. J. Photoenergy ID 150389, 1–7 (2009). https://doi.org/10.1155/2009/150389

    Article  CAS  Google Scholar 

  40. W. Al-Taa’y, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int. J. Polym. Sci. (2014). https://doi.org/10.1155/2014/697809

    Article  Google Scholar 

  41. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, B. Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609–618 (2018). https://doi.org/10.1016/j.optlastec.2018.07.039

    Article  CAS  Google Scholar 

  42. M.A. Assiri, M.A. Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, A.V. Soldatov, Kramers-Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): New trend in laser power attenuation using inorganics. Phys. B 552, 62–70 (2019). https://doi.org/10.1016/j.physb.2018.09.040

    Article  CAS  Google Scholar 

  43. E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Structure, dielectric and optical properties of P-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik. 123, 1161–1166 (2012). https://doi.org/10.1016/j.ijleo.2011.06.066

    Article  CAS  Google Scholar 

  44. S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, Development of novel hybrid materials based on poly(2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J. Mol. Struct. 1150, 580–585 (2017). https://doi.org/10.1016/j.molstruc.2017.09.021

    Article  CAS  Google Scholar 

  45. S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym. Sci. 294(12), 1877–1885 (2016). https://doi.org/10.1007/s00396-016-3955-y

    Article  CAS  Google Scholar 

  46. H. Kharrat, N. Elfaleh, S. Kamoun, Synthesis, crystal structure and dielectric properties of C6H18N2SbCl5. J. Phys. Org. Chem. 29, 532–543 (2016). https://doi.org/10.1002/poc.3577

    Article  CAS  Google Scholar 

  47. A.N. Papathanassiou, J. Grammatikakis, I. Sakellis, S. Sakkopoulos, E. Vitoratos, E. Dalas, Hopping charge transport mechanisms in conducting polypyrrole: studying the thermal degradation of the dielectric relaxation. Appl. Phys. Lett. 87, 154107–154113 (2005). https://doi.org/10.1063/1.2103388

    Article  CAS  Google Scholar 

  48. ATMd Yusof, R. Idris, H.S. Shari, Conductivity study of diethylene glycol dibutyl ether (BDG) plasticizer on epoxidized natural rubber-50 (ENR50) polymer based electrolyte system. Mater. Today 16, 1654–1660 (2019). https://doi.org/10.1016/j.matpr.2019.06.031

    Article  CAS  Google Scholar 

  49. N.K. Jyothi, K.K.V. Ratnam, P.N. Murthy, K.V. Kumar, Electrical Studies of Gel Polymer Electrolyte based on PAN for Electrochemical Cell Applications. Mater. Today 3, 21–30 (2016). https://doi.org/10.1016/j.matpr.2016.01.112

    Article  Google Scholar 

  50. N.M.J. Rasali, S.K. Muzakir, A.S. Samsudin, A study on dielectric properties of the cellulose derivative-NH4Br-glycerol based the solid polymer electrolyte system. Makara J. Technol. 21, 65–69 (2017). https://doi.org/10.7454/mst.v21i2.3082

    Article  Google Scholar 

  51. W. Jilani, A. Bouzidi, N. Mzabi, O. Gallot-Lavallée, H. Guermazi, Effect of ITO nanoparticles on dielectric relaxation processes and an analysis of the electric impedance characteristics of ITO/epoxy nanocomposites for embedded capacitor devices. J. Electr. Mater. 48, 6529 (2019). https://doi.org/10.1007/s11664-019-07439-5

    Article  CAS  Google Scholar 

  52. V. Bajgar, M. Penhaker, L. Martinková, A. Pavlovič, P. Bober, M. Trchová, J. Stejskal, Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16, 498 (2016). https://doi.org/10.3390/s16040498

    Article  CAS  Google Scholar 

  53. T. Siddaiah, P. Ojha, N.O. Gopal, Ch Ramu, H. Nagabhushana, Thermal, structural, optical and electrical properties of PVA/MAA: EA polymer blend filled with different concentrations of Lithium Perchlorate. J. Sci. Adv. Mater. Devi. 3, 456–463 (2018). https://doi.org/10.1016/j.jsamd.2018.11.004

    Article  Google Scholar 

  54. A.P. Fonseca, D.S. Rosa, F. Gaboardi, S. Neves, Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 155(2), 381–384 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 2/65/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yahia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, A., Jilani, W., Yahia, I.S. et al. Optical Analysis and UV-Blocking Filter of Cadmium Iodide-Doped Polyvinyl Alcohol Polymeric Composite Films: Synthesis and Dielectric Properties. J Inorg Organomet Polym 30, 3940–3952 (2020). https://doi.org/10.1007/s10904-020-01534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01534-5

Keywords

Navigation