Skip to main content
Log in

Synthesis of transparent BaTiO3 nanoparticle/polymer hybrid

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transparent BaTiO3 nanoparticle/polymer hybrid was synthesized by polymerization and hydrolysis of barium titanium alkoxide modified with 2-vinyloxyethoxy ligand. Barium alkoxide, titanium alkoxide and 2-vinyloxyethanol were reacted affording a BaTiO3 precursor, which was then hydrolyzed and polymerized to form BaTiO3 particle/polymer hybrids below 100°C. BaTiO3 particles increased in crystallinity with increasing water amount for hydrolysis. The absorption edge of the hybrid film on silica plates shifted to shorter wavelength with decreasing crystallite size. Nano-sized BaTiO3 particle/polymer hybrid polymerized with methyl methacrylate (MMA) was shaped into a transparent and self-standing film with a refractive index of 1.595 at 589 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos P.A. (1996). Semiconductor clusters, nanocrystals and quantum dots. Science 271:933

    Article  CAS  Google Scholar 

  • Beecroft L.L., Ober C.K. (1997). Nanocomposite materials for optical devices. Chem. Mater. 9:1302

    Article  CAS  Google Scholar 

  • Bradley D.C., Mehrotra R.C., Gaur D.P. (1978). Metal Alkoxide. Academic, New York, p. 118

    Google Scholar 

  • Brandrup J., Immergut E.H. (1989). Polymer Handbook. 3rd. ed., John Wiley & Sons, New York, V-77

    Google Scholar 

  • Campion J-F., Payne D.A., Chae H.K., Maurin J.K., Wilson S.R. (1991). Synthesis of bimetallic barium titanium alkoxides as precursors for electrical ceramics. Inorg. Chem. 30:3244

    Article  CAS  Google Scholar 

  • Charles S.W. & J. Popplewell, 1980. Ferromagnetic liquids, In: Wohlfarth E.P. ed. Ferromagnetic Materials, Vol. 2. North-Holland, Amsterdam, 509–559.

  • Cullity B.D. (1978). Elements of X-ray Diffraction. 2nd ed., Addison-Wesley, Reading, MA, p. 284

    Google Scholar 

  • Davis G.M., Gower M.C., (1989). Epitaxial growth of thin films of BaTiO3 using excimer laser ablation. Appl. Phys. Lett. 55:112

    Article  CAS  Google Scholar 

  • Gomez-Romero C., Sanchez C., (2004). Functional Hybrid Materials. Wiley-VCH, Weinheim, p. 4

    Google Scholar 

  • Guo W., Datye A.K., Ward T.L. (2005). Synthesis of barium titanate powders by aerosol pyrolysis of a Pechini-type precursor solution. J. Mater. Chem. 15:470

    Article  CAS  Google Scholar 

  • Hirano S., Yogo T., Sakamoto W., Yamada S., Nakmaura T., Yamamoto T., Ukai H. (2001). In situ processing of electroceramic fine particles/polymer hybrid. J. Euro. Ceram. Soc. 21:1479

    Article  CAS  Google Scholar 

  • Hoyer P., Weller H. (1994). Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin film electrode. Chem. Phys. Lett. 211:379

    Article  Google Scholar 

  • Jona F. & G. Shirane, 1993. Ferroelectric Crystals, Dover, Mineola, NY, p. 108.

  • Kyprianidou-Leodidou T., Caseri W., Suter U.W. (1994). Size variation of PbS particles in high-refractive-index nanocomposites. J. Phys. Chem. 98:8992

    Article  CAS  Google Scholar 

  • Last J.T. (1957). Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105:1470

    Article  CAS  Google Scholar 

  • Lu X.M., Zhu J.S., Zhang W.Y., Ma G.O., Wang Y.N. (1996). The energy gap of r.f.-sputtered BaTiO3 thin films with different grain size. Thin Solid Films 274:165

    Article  CAS  Google Scholar 

  • Mazdiyasni K.S., Dolloff R.T., Smith J.S. (1969). Preparation of high-purity submicron barium titanate powders. J. Am. Ceram. Soc. 52:523

    Article  CAS  Google Scholar 

  • Palik E.D. (1998). Handbook of Optical Constant of Solids II. Academic Press, San Diego, p. 789

    Google Scholar 

  • Silverstein, R.M., F.X. Webster & D.J. Kiemle, 2005. Spectrometric Identification of Organic Compounds, 7th ed., John Wiley & Sons, New York, 72, 127.

  • Wemple S.H., DiDomenico M. Jr., Camlibel I. (1968). Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 29:1797

    Article  Google Scholar 

  • Wood R.W., 1961. Physical Optics, 3rd ed., Dover, New York, 425.

  • Woudenberg F.C.M., Sager W.F.C., ten Elshof J.E., Verweij H. (2005). Nanostructured barium titanate thin films from nanoparticles obtained by an emulsion precipitation method. Thin Solid Films 471:134

    Article  CAS  Google Scholar 

  • Yogo T., Yamada S., Kikuta K., Hirano S., (1994). Synthesis of barium titanate/polymer composites from metal alkoxide. J. Sol-Gel Sci.Tech. 2:175

    Article  CAS  Google Scholar 

  • Yogo T., Ukai H., Sakamoto W., Hirano S. (1999). Synthesis of PbTiO3/organic hybrid from metalorganic compounds. J. Mater. Res. 14:3275

    Article  CAS  Google Scholar 

  • Yogo T., Banno K., Sakamoto W., Hirano S., (2003). Synthesis of a KNbO3 particle/polymer hybrid from metalorganics. J. Mater. Res. 18:1679

    CAS  Google Scholar 

  • Yogo T., Yamamoto T., Sakamoto W., Hirano S. (2004). In situ synthesis of nanocrystalline BaTiO3 particle-polymer hybrid. J. Mater. Res. 19:3290

    Article  CAS  Google Scholar 

  • Yuh J., Nino J.C., Sigmund W.M. (2005). Synthesis of barium titanate nanofibers via electrospinning. Mater. Lett. 59:3645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinobu Yogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumida, K., Hiramatsu, K., Sakamoto, W. et al. Synthesis of transparent BaTiO3 nanoparticle/polymer hybrid. J Nanopart Res 9, 225–232 (2007). https://doi.org/10.1007/s11051-006-9140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9140-3

Keywords

Navigation