Skip to main content
Log in

Preparation and investigation of suitability of gadolinium oxide nanoparticle doped polyvinyl alcohol films for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gd2O3 nanoparticles synthesized by solution combustion method were used to prepare PVA-Gd2O3 nanocomposite films of varying concentrations (2 wt%–6 wt% of filler) by solution casting method. Being a rare earth oxide, gadolinium oxide was expected to exhibit good photoluminescence and the nanocomposite was expected to be flexible as well. The Gd2O3 nanoparticles prepared were found to be in cubic phase with an average size of 19 nm. Raman spectra showed the incorporation of Gd2O3 into the polymer matrix. Scanning electron microscope images revealed that the particles were porous in nature, agglomerated and distributed evenly on the surface of the film in the form of clusters. The UV–Visible absorption spectra gave direct optical energy band gap value in the range 5.78–4.86 eV. Both band gap as well as the Urbach energy are seen to decrease with increasing concentration of the dopant. Four prominent photoluminescence peaks were observed in all the three composite films in the UV region (318 nm), deep blue region (396 nm), blue region (477 nm) and green region (553 nm). The color purity of the films using CIE coordinates was found to be the highest, 82.81%, in the 2 wt% film making this film a promising material for blue OLED’s and blue flexible screens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8: a
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Hanemann, D.V. Szabó, Materials 3, 3468 (2010)

    Article  Google Scholar 

  2. A. Sorrentino, G. Gorrasi, V. Vittoria, Trends Food Sci. Technol. 18, 84 (2007)

    Article  Google Scholar 

  3. H.M. de Azeredo, Food Res. Int. 42, 1240 (2009)

    Article  Google Scholar 

  4. G. Harsányi, Sens. Actuators A 46-47, 85 (1995)

    Article  Google Scholar 

  5. B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699 (2004)

    Article  Google Scholar 

  6. Y.Y. Zhang, L.F. Shen, E.Y.B. Pun, B.J. Chen, H. Lin, Opt. Commun. 311, 111 (2013)

    Article  Google Scholar 

  7. Y. Shi, J. Liu, Y. Yang, J. App. Phys. 87, 4254 (2000)

    Article  Google Scholar 

  8. J.R.H. Shaw-Stewart, T. Mattle, T.K. Lippert, M. Nagel, F.A. Nuesch, A. Wokaun, J. Appl. Phys. 113, 043104 (2013)

    Article  Google Scholar 

  9. B. Geffroy, P. Roy, C. Prat, Polym. Int. 55, 572 (2006)

    Article  Google Scholar 

  10. R.B. Salikhov, Y.N. Biglova, A.G. Mustafin, New Organic Polymers for Solar Cells, ed By S. Ameen, (IntechOpen, London, 2018), p-83

  11. J. Tsung, D.J. Burgess, Biodegradable polymers in drug delivery system, ed. By J. Siepmann, R.A. Siegel, M.J. Rathbone, (Springer, New York, 2012), p-107

  12. D. Feldman, J. Macromol. Sci. Part A 53, 55 (2016)

    Article  Google Scholar 

  13. S. Musikhin, L. Bakueva, E.H. Sargent, A. Shik, J. Appl. Phys. 91, 6679 (2002)

    Article  Google Scholar 

  14. M. Peres, L.C. Costa, A. Neves, M.J. Soares, T. Monteiro, A.C. Esteves, A. Barros-Timmons, T. Trindade, A. Kholkin, E. Alves, Nanotechnology 9, 1969 (2005)

    Article  Google Scholar 

  15. Z.H. Guo, S.Y. Wei, B. Shedd, R. Scaffaro, T. Pereira, H.T. Hahn, J. Mater. Chem. 17, 806 (2007)

    Article  Google Scholar 

  16. H. Althues, P. Pötschke, G.M. Kim, S. Kaskel, J. Nanosci. Nanotechnol. 9, 2739 (2009)

    Article  Google Scholar 

  17. D. Sun, H.J. Sue, Appl. Phys. Lett. 94, 253106 (2009)

    Article  Google Scholar 

  18. H. Mishra, V. Misra, M.S. Mehata, T.C. Pant, H.B. Tripathi, J. Phys. Chem. A 108, 2346 (2004)

    Article  Google Scholar 

  19. E.M. Amin, N. Karmakar, B. Winther-Jensen, Prog. Electromagnet. Res. 54, 149 (2013)

    Article  Google Scholar 

  20. W. Liu, Z. Wu, Y. Wang, Z. Tang, J. Du, L. Yuan, D. Li, H. Chen, J. Mater. Chem. B 2, 4272 (2014)

    Article  Google Scholar 

  21. S.B. Aziz, J. Elec. Mater. 45, 736 (2015)

    Article  Google Scholar 

  22. W. Al-Taa’y, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Int. J. Polym. Sci. 2014, 697809 (2014)

    Google Scholar 

  23. T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spect. 2015, 204867 (2015)

    Google Scholar 

  24. G.N.H. Kumar, J.L. Rao, N.O. Gopal, K.V. Narasimhulu, R.P.S. Chakradhar, A.V. Rajulu, Polymer 45, 5407 (2004)

    Article  Google Scholar 

  25. M. Pattabi, B.S. Amma, K. Manzoor, G. Sanjeev, Sol. Energy Mater. Sol. Cells 91, 1403 (2007)

    Article  Google Scholar 

  26. K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, RSC Adv. 7, 15084 (2017)

    Article  Google Scholar 

  27. Z. Qiu, Y. Zhou, M. Lu, A. Zhang, Q. Ma, Acta Mater. 55, 2615 (2007)

    Article  Google Scholar 

  28. P.K. Shahi, A.K. Singh, S.B. Rai, B. Ullrich, Sens. Actuators A. Phys. 222, 255 (2015)

    Article  Google Scholar 

  29. A.J. Kenyon, Prog. Quantum Electron. 26, 225 (2002)

    Article  Google Scholar 

  30. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)

    Article  Google Scholar 

  31. M. Nichkova, D. Dosev, R. Perron, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Bioanal. Chem. 384, 631 (2006)

    Article  Google Scholar 

  32. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Spectrochim Acta Part A 96, 532 (2012)

    Article  Google Scholar 

  33. R.K. Tamrakar, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 550 (2014)

    Article  Google Scholar 

  34. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials combustion synthesis, properties and applications, (World Scientific Publishing Co. Pte. Ltd., Singapore, 2008), pp. 45-52

  35. R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, Polymer 47, 3591 (2006)

    Article  Google Scholar 

  36. M. Abdelaziz, E.M. Abdelrazek, Phys. B 390, 1 (2007)

    Article  Google Scholar 

  37. N.B.R. Kumar, V. Crasta, R.F. Bhajantri, B.M. Praveen, J. of Poly. (2014) 846140

  38. I. Omkaram, R.P.S. Chakradhar, J.L. Rao, Phys. B 388, 318 (2007)

    Article  Google Scholar 

  39. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, R.P.S. Chakradhar, Phys. B Phys. 406, 1639 (2011)

    Article  Google Scholar 

  40. J. Yan, Y. Huang, Y.E. Miao, W.W. Tjiu, T. Liu, J. Hazard. Mater. 283, 730 (2015)

    Article  Google Scholar 

  41. N. Luo, X. Tian, C. Yang, J. Xiao, W. Hu, D. Chen, L. Li, Phys. Chem. Chem. Phys. 15, 12235 (2013)

    Article  Google Scholar 

  42. S. Majeed, S.A. Shivashankar, Rapid. J. Mater. Chem. B. 2, 5585 (2014)

    Article  Google Scholar 

  43. M.O. Reddy, B.C. Babu, Indian J.Mater. Sci. 2015, 927364 (2015)

    Google Scholar 

  44. Y. Dwivedi, A. Bahadur, S.B. Rai, J. Appl. Phys. 110, 043103 (2011)

    Article  Google Scholar 

  45. F. Benz, J.A. Guerra, Y. Weng, R. Weingartner, H.P. Strunk, Phys. Status Solidi C 10, 109 (2012)

    Article  Google Scholar 

  46. L.H. Slooff, A. Van Blaaderen, A. Polman, J. Appl. Phys. 91, 3955 (2002)

    Article  Google Scholar 

  47. M. Zikriya, Y.F. Nadaf, C. Manjunath, C.G. Renuka, J. Mater. Sci. 29, 16824 (2018)

    Google Scholar 

  48. C. Yoon, J. Choi, Bull. Korean Chem. Soc. 30, 1821 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to INUP, IISc, CeNSE, Bangalore, funded by Meity, Govt. of India for providing characterization facilities. One of the authors S.N.M. thanks Shivaraja Ittigi for constant support throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rukmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, S.N., Hemalatha, K.S. & Rukmani, K. Preparation and investigation of suitability of gadolinium oxide nanoparticle doped polyvinyl alcohol films for optoelectronic applications. J Mater Sci: Mater Electron 30, 9051–9063 (2019). https://doi.org/10.1007/s10854-019-01237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01237-9

Navigation