Skip to main content
Log in

Synthesis of single-phase zinc chromite nano-spinel embedded in polyvinyl alcohol films and its effects on energy band gap

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer nanocomposite films based on polyvinyl alcohol (PVA) and synthesis spinel zinc chromite (ZnCr2O4) nanoparticle films were obtained using the in situ chemical reduction method and solution casting technique, for different concentration of ZnCr2O4 nanoparticles. The characterization of the polymer nanocomposite films was carried out using XRD, SEM, and UV–visible Spectroscopy. The XRD analyses confirmed the cubic nanocrystalline ZnCr2O4 phase formation and an average crystallite size of approximately (23.35–25.36) nm. The UV–visible measurement of nanocomposite film shows two broad absorption peaks with a maximum at 410 and 570 nm, which correspond to the characteristics of the ZnCr2O4 nanoparticles. The effect of various concentration of ZnCr2O4 nanoparticle on the optical energy gap of nanocomposite films has been studied to comprehend the optimum conditions for the synthesis process. The significant decreasing of the direct allowed energy band gap of the PVA was observed upon increasing the ZnCr2O4 concentration, from (6.13 eV) for pure PVA to (4.76 eV) for 0.04 M ZnCr2O4 concentration. The decrease in the optical energy gap can be correlated to the formation of charge-transfer complexes within the base polymer network on embedding ZnCr2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232–1261 (2013)

    Article  Google Scholar 

  2. E. Staudner, L. Cernakoval, G. Kysela, Int. Polym. Sci. Technol. 11, 50–53 (1984)

    Google Scholar 

  3. OGh Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. Mater. Electron. 26, 6939–6944 (2015)

    Article  Google Scholar 

  4. W.G. Perkins, A.M. Marcelli, H.W. Frerking, J. Appl. Polym. Sci. 43, 329–349 (1991)

    Article  Google Scholar 

  5. S.F. Bdewi, OGh Abdullah, B.K. Aziz, A.A.R. Mutar, J. Inorg. Organomet. Polym. Mater. 26, 326–334 (2016)

    Article  Google Scholar 

  6. V. Raja, A.K. Sarma, V.V.R.N. Rao, Mater. Lett. 57, 4678–4683 (2003)

    Article  Google Scholar 

  7. OGh Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)

    Article  Google Scholar 

  8. J.M. Gohil, A. Bhattacharya, P. Ray, J. Polym. Res. 13, 161–169 (2006)

    Article  Google Scholar 

  9. S.M. Pawde, K. Deshmukh, S. Parab, J. Appl. Polym. Sci. 109, 1328–1337 (2008)

    Article  Google Scholar 

  10. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9, 165–171 (2009)

    Article  Google Scholar 

  11. OGh Abdullah, B.K. Aziz, S.A. Hussen, Chem. Mater. Res. 3, 84–90 (2013)

    Google Scholar 

  12. J.K. Rao, A. Raizada, D. Ganguly, M.M. Mankad, S.V. Satyanarayana, G.M. Madhu, Polym. Bull. 72, 2033–2047 (2015)

    Article  Google Scholar 

  13. X.F. Qian, J. Yin, J.C. Huang, Y.F. Yang, X.X. Guo, Z.K. Zhu, Mater. Chem. Phys. 68, 95–97 (2001)

    Article  Google Scholar 

  14. D. Kumar, S.K. Jat, P.K. Khanna, N. Vijayan, S. Banerjee, Int. J. Green Nanotechnol. 4, 408–416 (2012)

    Article  Google Scholar 

  15. A. Hassen, A.M. El-Sayed, W.M. Morsi, S. El-Sayed, J. Appl. Phys. 112, 093525–093528 (2012)

    Article  Google Scholar 

  16. OGh Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. Mater. Electron. 27, 3591–3598 (2015)

    Article  Google Scholar 

  17. S. Rajendran, M. Sivakumar, R. Subadevi, Solid State Ionics 167, 335–339 (2004)

    Article  Google Scholar 

  18. R. Singh, S.G. Kulkarni, N.H. Naik, Adv. Mater. Lett. 4, 82–88 (2013)

    Article  Google Scholar 

  19. A.M. Meftah, E. Gharibshahi, N. Soltani, W.M.M. Yunus, E. Saion, Polymers 6, 2435–2450 (2014)

    Article  Google Scholar 

  20. A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Microsyst. Technol. 21, 859–868 (2015)

    Article  Google Scholar 

  21. C.V. Hemandez, O. Almanza, J.F. Jurado, J. Phys, Conf. Ser. 167, 012037 (2009)

    Article  Google Scholar 

  22. M. Stefanescu, M. Barbu, T. Vlase, P. Barvinschi, L.B. Tudoran, M. Stoia, Thermochim. Acta 526, 130–136 (2011)

    Article  Google Scholar 

  23. Z.V.M. Stanojevic, N. Romcevic, B. Stojanovic, J. Eur. Ceram. Soc. 27, 903–907 (2007)

    Article  Google Scholar 

  24. D. Gingasu, I. Mindru, L. Patron, D.C. Culita, J.M.C. Moreno, L. Diamandescu, M. Feder, O. Oprea, J. Phys. Chem. Solids 74, 1295–1302 (2013)

    Article  Google Scholar 

  25. N. Kavasoglu, A.S. Kavasoglu, M. Bayhan, Sensor Actuator A 126, 355–361 (2006)

    Article  Google Scholar 

  26. P. Parhi, V. Manivannan, J. Eur. Ceram. Soc. 28, 1665–1670 (2008)

    Article  Google Scholar 

  27. S.V. Bangale, S.R. Bamane, J. Mater. Sci. Mater. Electron. 24, 277–281 (2013)

    Article  Google Scholar 

  28. S.A. Hosseini, M.C.A. Galvan, J.L.G. Fierro, A. Niaei, D. Salari, Ceram. Int. 39, 9253–9261 (2013)

    Article  Google Scholar 

  29. M. Yazdanbakhsh, I. Khosravi, E.K. Goharshadi, A. Youssefi, J. Hazard. Mater. 184, 684–689 (2010)

    Article  Google Scholar 

  30. S. Levy, D. Diella, V. Pavese, A. Dapiaggi, M. Sani, Am. Mineral. 90, 1157–1167 (2005)

    Article  Google Scholar 

  31. R.G. Chandran, K.C. Patil, Mater. Lett. 12, 437–441 (1992)

    Article  Google Scholar 

  32. X. Niu, W. Du, W. Du, Sensor Actuator B 99, 405–409 (2004)

    Article  Google Scholar 

  33. Z.V. Marinkovic, L. Mancic, R. Maric, O. Milosevic, J. Eur. Ceram. Soc. 21, 2051–2055 (2001)

    Article  Google Scholar 

  34. S.A. Gene, E. Saion, A.H. Shaari, M.A. Kamarudin, N.M. Al-Hada, A. Kharazmi, J. Nanomater. 2014, 416765 (2014)

    Article  Google Scholar 

  35. S. Sarma, P. Datta, Nanosci. Nanotechnol. Lett. 2, 261–265 (2010)

    Article  Google Scholar 

  36. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, J.H. Lee, J. Alloy. Compd. 580, 392–400 (2013)

    Article  Google Scholar 

  37. S. Mahendia, A.K. Tomar, S. Kumar, Mater. Sci. Eng. B 176, 530–534 (2011)

    Article  Google Scholar 

  38. P. Hong, J.H. Chen, H.L. Wu, J. Appl. Polym. Sci. 69, 2477–2486 (1998)

    Article  Google Scholar 

  39. S. Naz, S.K. Durrani, M. Mehmood, M. Nadeem, J. Saudi Chem. Soc. in press (2015). doi:10.1016/j.jscs.2014.12.007

  40. I. Esparza, M. Paredes, R. Martinez, A.G. Couto, G.S. Loredo, L.M.F. Velez, O. Dominguez, Mater. Sci. Appl. 2, 1584–1592 (2011)

    Google Scholar 

  41. W.R. Moser, K.E. Connolly, Chem. Eng. J. Biochem. Eng. J. 64, 239–246 (1996)

    Article  Google Scholar 

  42. C. Suryanarayana, M. Grant Norton, X-ray Diffraction. A Practical Approach (Plenum Press, New York, 1998)

    Book  Google Scholar 

  43. OGh Abdullah, Y.A.K. Salman, S.A. Saleem, Phys. Mater. Chem. 3, 18–24 (2015)

    Google Scholar 

  44. H. Karami, M. Ghasemi, S. Matini, Int. J. Electrochem. Sci. 8, 11661–11679 (2013)

    Google Scholar 

  45. S.H. Deshmukh, D.K. Burghate, S.N. Shilaskar, G.N. Chaudhari, P.T. Deshmukh, Indian J. Pure Appl. Phys. 46, 344–348 (2008)

    Google Scholar 

  46. OGh Abdullah, D.R. Saber, S.A. Taha, Adv. Mater. Lett. 6, 153–157 (2015)

    Article  Google Scholar 

  47. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, Siddaramaiah, J. Alloy Compd. 586, 333–342 (2014)

    Article  Google Scholar 

  48. S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Phys. E 40, 3121–3126 (2008)

    Article  Google Scholar 

  49. D. Saikia, P.K. Saikia, P.K. Gogoi, M.R. Das, P. Sengupta, M.V. Shelke, Mater. Chem. Phys. 131, 223–229 (2011)

    Article  Google Scholar 

  50. J. Tauc, A. Menth, J. Non Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  51. J.L. Gray, The Physics of the Solar Cell, Chapter 3 (Wiley, London, 2011)

    Google Scholar 

  52. F.F. Muhammad, K. Sulaiman, Measurement 44, 1468–1474 (2011)

    Article  Google Scholar 

  53. F.F. Muhammad, S.B. Aziz, S.A. Hussein, J. Mater. Sci. Mater. Electron. 26, 521–529 (2015)

    Article  Google Scholar 

  54. Y.Q. Rao, S. Chen, Macromolecules 41, 4838–4844 (2008)

    Article  Google Scholar 

  55. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, J. Mater. Chem. 21, 18623–18629 (2011)

    Article  Google Scholar 

  56. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Iran Polym. J. 22, 767–774 (2013)

    Article  Google Scholar 

  57. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, J. Mater. Sci. Mater. Electron. 26, 8022–8028 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The Author is very much grateful to the University of Sulaimani, for providing financial assistance for this research. The author gratefully acknowledges the Kurdistan Institution for Strategic Studies and Scientific Research for the facility in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G. Synthesis of single-phase zinc chromite nano-spinel embedded in polyvinyl alcohol films and its effects on energy band gap. J Mater Sci: Mater Electron 27, 12106–12111 (2016). https://doi.org/10.1007/s10854-016-5361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5361-0

Keywords

Navigation