Skip to main content

Advertisement

Log in

Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mg-ion conducting solid polymer electrolytes (SPE) consisting of PVdF-HFP/PVAc with magnesium perchlorate Mg(ClO4)2 salt have been developed and their experimental investigations are reported. Solution casting method is used for the preparation of the polymer electrolyte films by using THF as solvent. The XRD reveals that the crystalline phase of the polymer host and it has completely changed into other side with the addition of the dopant. FTIR analysis shows the good complexation behavior between the polymer and the salt. The temperature dependent ac ionic conductivity shows the highest ionic conductivity of 2.93 × 10− 4 Scm− 1 was found at 363K for the concentration of 69 Wt% PVdF-HFP: 23 Wt% PVAc : 8 Wt% Mg(ClO4)2 of the polymer electrolytes with an activation energy value of 0.33 eV. The SPE with the highest conductivity showed as electrochemical stability of 4 V. The obtained cyclic voltammetry is an evidence for reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Agnihotri, A.L. Sharma, Optimization of concentration of MWCNT in terms of performance of prepared novel cathode material for energy storage. J. Integr. Sci. Technol. 5, 23–26 (2017)

    Google Scholar 

  2. X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2014)

    Article  Google Scholar 

  3. J. Skea, S. Nishioka (2008) Policies and practices for a low-carbon society. Climate policy (Taylor and francis, Milton Park) pp. 5–16

    Google Scholar 

  4. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)

    Article  Google Scholar 

  5. F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sour. 88, 169–191 (2000)

    Article  Google Scholar 

  6. B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R&D. J. Power Sour. 100, 93–100 (2001)

    Article  Google Scholar 

  7. C.H. Park, Y.K. Sun, D.W. Kim, Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochim. Acta 50, –375 (2004)

  8. J.B. Good enough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  9. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008)

    Article  Google Scholar 

  10. C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)

    Article  Google Scholar 

  11. N. Angulakshmi, S. Thomas, K.S. Nahm, A.M. Stephan, R.N. Elizabeth, Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17, 407–414 (2011)

    Article  Google Scholar 

  12. A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J 42, 21–42 (2006)

    Article  Google Scholar 

  13. D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, E.H. Gottlieb, Y. Gofer, I. Goldberg, Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149, 115–121 (2002)

    Article  Google Scholar 

  14. R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014)

    Article  Google Scholar 

  15. M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. commun. 3, 1149–1155 (2012)

    Article  Google Scholar 

  16. N. Wu, Y.C. Lyu, R.J. Xiao, Y.X. Yu, X.Q. Yang, H. Li, L. Gu, Y.G. Guo, A highly reversible, low strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater 2014 6, e120 (2014)

    Article  Google Scholar 

  17. N. Wu, H.R. Yao, Y.G. Guo, Y.X. Yin, Improving the electrochemical properties of the red P anode in Na-ion batteries via the spaceconfinement of carbon nanopores. J. Mater. Chem. A 3, 24221–24225 (2015)

    Article  Google Scholar 

  18. Y. Nuli, J. Yang, J. Wang, Y. Li, Electrochemical interaction of Mg2+ in magnesium manganese silicate and its application as high energy rechargeable magnesium battery cathode. J. Phys. Chem. C 113, 12594–12597 (2009)

    Article  Google Scholar 

  19. S. Song, M. kotobuki, F. zheng, Q. Li, C. xu, Y. Wang, W.D.Z. Li, N. Hu, L. Lu, communication- a composite polymer electrolyte for safer Mg batteries. J. Electrochem. Soc. 164, 741–743 (2017)

    Article  Google Scholar 

  20. M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55, 570–585 (2015)

    Article  Google Scholar 

  21. N. Wu, W. Wang, Y. Wei, T. Li,)studies on the effect of nano sized Mgo in magnesium ion conducting gel polymer electrolytes for rechargeable magnesium batteries. Energies 10, 1215 (2017)

    Article  Google Scholar 

  22. J. Wang, S. Song, R. Muchakayala, X. Hu, R. Liu, Structural, electrical and electrochemical properties of PVA based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)

    Article  Google Scholar 

  23. J. Song, E. Sahadeo, M. Noked, S.B. Lee, Mapping the challenges of Magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016)

    Article  Google Scholar 

  24. S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)

    Article  Google Scholar 

  25. N. Ataollahi, A. Ahmad, H. Hamzah, M.Y.A. Rahman, N.S. Mohamed, Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012)

    Google Scholar 

  26. M. Ulaganathan, S. Rajendran, Preparation and characterization of (PVAc/PVdF-HFP)—based polymer blend electrolytes. Ionics 16, 515–521 (2010)

    Article  Google Scholar 

  27. Y. Hirai, C. Tani, Electrochromism for organic materials in polymeric all-solid-state systems. Appl. Phys. Lett. 43, 704 (1983)

    Article  Google Scholar 

  28. L.L. Yang, A.R. McgGhie, G.C. Parrington, Ionic conductivity in complexes of poly(ethylene oxide) and MgCl2. J. Electrochem. Soc. 133, 1380–1385 (1986)

    Article  Google Scholar 

  29. M. Ulaganathan, S. Sundar pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mat. chem. Phys. 129, 471–476 (2011)

    Article  Google Scholar 

  30. R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37, 1371–1376 (1996)

    Article  Google Scholar 

  31. M.J. Reddy, P.P. Chu, Effect of Mg2 + on PEO morphology and conductivity. Solid State Ionics 149, 115–123 (2002)

    Article  Google Scholar 

  32. R. Mangalam, M. Thamilselvan, S. Selvasekarapandian, S. Jayakumar, R. Manjuladevi, S. Vairam (2017) Development and study of solid polymer electrolyte based on polyvinyl alcohol: Mg(ClO4)2. Polym-Plast. Technol. Eng. https://doi.org/10.1080/03602559.2016.1247280

  33. M. Ulaganathan, S. Rajendran, Preparation and characterizations of PVAc/PVdF-HFP based polymer blend electrolytes. Ionics 16, 515–521 (2010)

    Article  Google Scholar 

  34. S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, T. Hattori, Laser raman and FTIR studies on Li + interaction in PVAc/LiClO4 polymer electrolytes. Spectrochimica Acta Part A 65, 1234–1240 (2006)

    Article  Google Scholar 

  35. L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57–66 (2012)

    Article  Google Scholar 

  36. M. Ulaganathan, S. Rajendran, Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J. Appl. Polym. Sci. 118, 646–651 (2010)

    Google Scholar 

  37. S. Aruna, A. Anuradha, P.C. Thomas, M. Gulam Mohammed, S.A. Rajasekar, M. Vimalan, G. Mani, P. Sagayaraj, Growth, optical and thermal studies of L-arginine perchlorate—A promising non-linear optical single crystal. Indian J. Pure Appl. Phys. 45, 524–528 (2007)

    Google Scholar 

  38. F.A. Miller, G.C. Carlson, F.F. Bentley, W.H. Jones, Infra-red spectra of inorganic ions in the cesium bromide region (700 – 300 cm – 1). Spectrochim Acta 16, 135–235 (1960)

    Article  Google Scholar 

  39. D. Vanitha, A. Bahadur sultan, N. Nallaperumal, A. Shunmuganarayanan, Structural, thermal and electrical properties of polyvinyl alcohol/poly (vinyl pyrrolidone)—sodium nitrate solid polymer blend electrolyte. Ionics 24, 139–151 (2018)

    Article  Google Scholar 

  40. S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, N. vijaya, F. Kingslin, M. Genova, C. Sanjeeviraja, H. Nithya, I.J. kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend polymer doped with NH4NO3.. Int. J. Electroact. Mater. 1, 64–70 (2013)

    Google Scholar 

  41. K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013)

    Article  Google Scholar 

  42. S.D. Druger, A. Nitzan, M.A. Ratner, Application of dynamic bond percolation theory to the dielectric response of polymer electrolytes. Solid State Ionics 18–19, 106–111 (1983)

    Google Scholar 

  43. S. Ramesh, A.H. Yahya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152, 291–294 (2002)

    Article  Google Scholar 

  44. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim. Acta 46, 1829–1836 (2001)

    Article  Google Scholar 

  45. G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Preparation, conductivity, complex permittivity and electric modulus in AgI,Ag2O,SeO3,MoO3 glasses. Solid State Ionics 76, 47–55 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh Prabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponmani, S., Prabhu, M.R. Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries. J Mater Sci: Mater Electron 29, 15086–15096 (2018). https://doi.org/10.1007/s10854-018-9649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9649-0

Navigation