Skip to main content

Advertisement

Log in

Synthesis and characterization of TiO2 nanotubes doped with Fe via in situ Anodization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this paper was to study the effect of Fe at low concentration in self-organized titania nanotube (TNT) arrays by using a convenient one-step synthesis process. The synthesis was done by electrochemical anodization of titanium sheets in an electrolyte solution formed by ethylene glycol (EG), ammonium fluoride (NH4F) and deionized water. Iron was also added to the electrolyte in various quantities to prepare 0.005, 0.007, 0.01, 0.012 and 0.014 M solution of Fe(NO3)3·9H2O. The prepared nanotubes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis spectroscopy (UV–vis) and Raman spectroscopy. Iron ions influence the morphology of the obtained TiO2. In addition, iron also changes the band gap energy of the resulted materials. A decrease in the band gap energy to 2.94 eV was observed for 2.4Fe-TNT containing the highest amount of iron tested, compared to 3.27 eV of pure 0.0Fe-TNT. Thus, this convenient iron doping of the TNT leads to a significant photoresponse of the material in the visible light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Lv, X. Li, K. Deng, J. Sun, X. Li, M. Li, Appl. Catal. B 95, 383 (2010)

    Article  Google Scholar 

  2. M.M. Mikhailov, Inorg. Mater. 40, 1203 (2004)

    Article  Google Scholar 

  3. M. Grätzel, F.P. Rotzinger, Chem. Phys. Lett. 118, 474 (1985)

    Article  Google Scholar 

  4. S. Valencia, X. Vargas, L. Rios, G. Restrepo, J.M. Marín, J. Photochem. Photobiol. A 251, 175 (2013)

    Article  Google Scholar 

  5. P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak, E. Skwarek, W. Janusz, J. Hupka, Appl. Catal. B 84, 440 (2008)

    Article  Google Scholar 

  6. G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, G. Yu, Nanoscale. 7, 3117 (2015)

    Article  Google Scholar 

  7. X. Ma, D. Li, S. Zhao, G. Li, K. Yang, Nanoscale Res. Lett. 9, 580 (2014)

    Article  Google Scholar 

  8. Y. Zhu, L. Zhang, W. Yao, L. Cao, Appl. Surf. Sci. 158, 32 (2000)

    Article  Google Scholar 

  9. I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chem. Phys. Lett. 445, 233 (2007)

    Article  Google Scholar 

  10. J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)

    Article  Google Scholar 

  11. K. Shankar, K.C. Tep, G.K. Mor, C.A. Grimes, J. Phys. D 39, 2361 (2006)

    Article  Google Scholar 

  12. Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, Nanoscale Res. Lett. 9, 46 (2014)

    Article  Google Scholar 

  13. H. Yan, X. Wang, M. Yao, X. Yao, Prog. Nat. Sci. 23, 402 (2013)

    Article  Google Scholar 

  14. Ş. Ş. Türkyılmaz, N. Güy, M. Özacar, J. Photochem. Photobiol. 341, 39 (2017)

    Article  Google Scholar 

  15. W. Chen, Y. Lei, Y. Jiang, Res. Pol. 48, 68 (2016)

    Article  Google Scholar 

  16. S. Bandna Bharti, H.-N. Kumar, R. Lee, Kumar, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  17. L. Junwu, Z. Zhixiang, Z. Kaihui, W. Yucheng, J. Wuhan Univ. of Technol. Mater. Sci. Ed. 21, 57 (2006)

    Article  Google Scholar 

  18. Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, J. Mater. Sci. 34, 3721 (1999)

    Article  Google Scholar 

  19. Z. Cai, Y. Sun, W. Liu, F. Panet, P. Sun, J. Fu, Environ. Sci. Pollut. Res. 24, 15882 (2017)

    Article  Google Scholar 

  20. C. Fàbrega, T. Andreu, A. Cabot, J.R. Morante, J. Photochem. Photobiol. A Chem. 211, 170 (2010)

    Article  Google Scholar 

  21. Z. Sun, Y. Yan, G. Zhang, Z. Wu, S. Zheng, Adv. Powder Technol. 26, 595 (2015)

    Article  Google Scholar 

  22. C.H. Lee, S.W. Rhee, H. Choi, Nanoscale Res. Lett. 7, 48 (2012)

    Article  Google Scholar 

  23. N.R. Jana, L. Gearheart, C.J. Murphy, Chem. Commun. 7, 617 (2001)

    Article  Google Scholar 

  24. S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel, L. Madler, J. Am. Chem. Soc. 133, 11270 (2011)

    Article  Google Scholar 

  25. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. Cells. 93, 1875 (2009)

    Article  Google Scholar 

  26. R. Ambati, P.R. Gogate. Ultrason. Sonochem. 40, 91 (2018)

    Article  Google Scholar 

  27. P. Daram, C. Banjongprasert, W. Thongsuwan, S. Jiansirisomboon, Surf. Coat. Technol. 306, 290 (2016)

    Article  Google Scholar 

  28. S. Joseph, T.M. David, C. Ramesh, P. Sagayaraj, Int. J. Sci. Eng. Res. 5(3), 85 (2014)

    Google Scholar 

  29. A. Sorachon, Yoriya, Craig, Grimes, Langmuir. 26(1), 417 (2010)

    Article  Google Scholar 

  30. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes. J. Phys. Chem. B 110, 16179 (2006)

    Article  Google Scholar 

  31. S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. C 111, 13770 (2007)

    Article  Google Scholar 

  32. Y. Shin, S. Lee, Nanotechnology. 20, 105301 (2009)

    Article  Google Scholar 

  33. A. Jaroenworaluck, D. Regonini, C.R. Bowen, R. Stevens, D. Allsopp, J. Mater. Sci. 42, 6729 (2007)

    Article  Google Scholar 

  34. G. Liu, K. Wang, N. Hoivik, H. Jakobsen, Sol. Energy Mater. Sol. Cells. 98, 24 (2012)

    Article  Google Scholar 

  35. M. Inoue, I. Hirasawa, J. Cryst. Growth 380, 169 (2013)

    Article  Google Scholar 

  36. T. Ohsaka, S. Yamaoka, O. Shimomura, Solid State Commun. 30, 345 (1979)

    Article  Google Scholar 

  37. J.C. Parker, R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990)

    Article  Google Scholar 

  38. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. 15, 627 (1966)

    Article  Google Scholar 

  39. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  Google Scholar 

  40. S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel, L. Mädler, Am. Chem. Soc. 133, 11270 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the financial support from CONACyT, Mexico, under the research project No. 61414 and 104257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salomón Ramiro Vásquez-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez-García, S.R., Garcia-Rueda, A.K., Flores-Ramírez, N. et al. Synthesis and characterization of TiO2 nanotubes doped with Fe via in situ Anodization. J Mater Sci: Mater Electron 29, 15814–15820 (2018). https://doi.org/10.1007/s10854-018-9339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9339-y

Navigation