Skip to main content
Log in

Effect of ultrasonic vibration on the interfacial IMC three-dimensional morphology and mechanical properties of Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu halogen free solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu halogen free solder joints were fabricated by an ultrasonic vibration (USV)-assisted soldering process. The effects of the USV power on the three-dimensional (3-D) morphology of the intermetallic compounds (IMC) and mechanical properties of the halogen free solder joints were characterized systematically. Results showed that the root-mean-square roughness (Rrms) and the mean spacing of adjacent peaks of the profile (λave) of the interfacial IMC were linearly correlated with shear strength of the halogen free solder joints. It was more comprehensive to adopt the λave and Rrms evaluation parameters to characterize the relationship between the interfacial IMC 3-D morphology and shear strength of the halogen free solder joints. With increasing USV power, the eutectic microstructure of the solder seam was refined, and the proportion of eutectic microstructure in the solder seam and microhardness increased. When the USV power increased to 130 W, the Rrms and average thickness of the interfacial IMC decreased (decreases of 37.6% and 56.4%, respectively) and the corresponding λave and shear strength of the solder joint increased (increases of 68.7% and 45.8%, respectively). With increasing USV power, the fracture mechanism of the halogen free solder joint changed from brittle fracture to the ductile–brittle mixed fracture, and the fracture pathway transferred from the interfacial transition zone consisting of the solder seam and the interfacial IMC layer to the solder seam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77–95 (2017)

    Article  CAS  Google Scholar 

  2. Y. Yao, X. Long, L.M. Keer, Appl. Mech. Rev. 69, 1–15 (2017)

    Article  Google Scholar 

  3. K. Zhang, X. Zhang, R. Qiu, H. Shi, Y. Liu, J. Mater. Sci. Mater. Electron. 25, 1681–1686 (2014)

    Article  CAS  Google Scholar 

  4. M.H. Shu, B.M. Hsu, M.C. Hu, Microelectron. Reliab. 52, 2690–2700 (2012)

    Article  CAS  Google Scholar 

  5. A. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 11273–11283 (2016)

    Article  CAS  Google Scholar 

  6. L. Moore, L. Shi, Mater. Today 17, 163–174 (2014)

    Article  CAS  Google Scholar 

  7. Z. Li, Z. Xu, L. Ma, S. Wang, X. Liu, J. Yan, Ultrason. Sonochem. (2018) https://doi.org/10.1016/j.ultsonch.2018.08.009

    Article  Google Scholar 

  8. Q. Wang, X. Chen, L. Zhu, J. Yan, Z. Lai, P. Zhao, J. Bao, G. Lv, C. You, X. Zhou, Ultrason. Sonochem. 34, 947–952 (2017)

    Article  CAS  Google Scholar 

  9. X. Zhang, Y. Xiao, L. Wang, C. Wan, Q. Wang, H. Sheng, M. Li, Ultrason. Sonochem. 45, 86–94 (2018)

    Article  CAS  Google Scholar 

  10. B. Wu, X. Leng, Z. Xiu, J. Yan, Ultrason. Sonochem. 44, 280–287 (2018)

    Article  CAS  Google Scholar 

  11. Y. Xiao, S. Li, Q. Wang, Y. Xiao, Z. Song, Y. Mao, M. Li, Mater. Sci. Eng. A 729, 241–248 (2018)

    Article  CAS  Google Scholar 

  12. Y. Xiao, Q. Wang, Z. Wang, X. Zeng, M. Li, L. Wang, X. Zhang, X. Zhu, Ultrason. Sonochem. 45, 223–230 (2018)

    Article  CAS  Google Scholar 

  13. Z. Xu, Z. Li, J. Li, Z. Ma, J. Yan, Ultrason. Sonochem. 46, 79–88 (2018)

    Article  CAS  Google Scholar 

  14. W. Guo, T. Luan, J. He, J. Yan, Mater. Des. 125, 815–821 (2017)

    Article  Google Scholar 

  15. Y. Xiao, Y. Zhang, K. Zhao, S. Li, L. Wang, L. Liu, Y. Xiao, Y. Zhang, K. Zhao, S. Li, Ceram. Int. 43, 16–23 (2017)

    Google Scholar 

  16. R.K. Chinnam, C. Fauteux, J. Neuenschwander, J. Janczak-Rusch, Acta Mater. 59, 1474–1481 (2011)

    Article  CAS  Google Scholar 

  17. H. Ji, Q. Wang, M. Li, J. Electron. Mater. 45, 1–10 (2016)

    Article  Google Scholar 

  18. A.T. Tan, A.W. Tan, F. Yusof, Ultrason. Sonochem. 34, 616–625 (2017)

    Article  CAS  Google Scholar 

  19. A.T. Tan, A.W. Tan, F. Yusof, J. Alloys Compd. 705, 188–197 (2017)

    Article  CAS  Google Scholar 

  20. D.Q. Yu, L. Wang, J. Alloys Compd. 458, 542–547 (2008)

    Article  CAS  Google Scholar 

  21. A.S. Zuruzi, S.K. Lahiri, P. Burman, K.S. Siow, J. Electron. Mater. 30, 997–1000 (2001)

    Article  CAS  Google Scholar 

  22. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, J. Mater. Process. Technol. 123, 133–145 (2002)

    Article  Google Scholar 

  23. A.A. El-Daly, A.M. El-Taher, Mater. Des. 47, 607–614 (2013)

    Article  CAS  Google Scholar 

  24. R. Mahmudi, S. Alibabaie, Mater. Sci. Eng., A 559, 421–426 (2013)

    Article  CAS  Google Scholar 

  25. Q.K. Zhang, Z.F. Zhang, J. Appl. Phys. 112, 95–105 (2012)

    Google Scholar 

  26. P. Liu, P. Yao, J. Liu, J. Alloys Compd. 486, 474–479 (2009)

    Article  CAS  Google Scholar 

  27. W. Peng, E. Monlevade, M.E. Marques, Microelectron. Reliab. 47, 2161–2168 (2007)

    Article  CAS  Google Scholar 

  28. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005)

    Article  Google Scholar 

  29. D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloys Compd. 389, 153 (2005)

    Article  CAS  Google Scholar 

  30. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, J. Alloys Compd. 492, 433–438 (2010)

    Article  CAS  Google Scholar 

  31. P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, J.K. Shang, Acta Mater. 57, 4697–4706 (2009)

    Article  CAS  Google Scholar 

  32. D. Ma, W.D. Wang, S.K. Lahiri, J. Appl. Phys. 91, 3312–3317 (2002)

    Article  CAS  Google Scholar 

  33. T. An, F. Qin, Microelectron. Reliab. 54, 932–938 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. U1604132, the Plan for Scientific Innovation Talent of Henan Province under Grant No. 154200510022, the National Science and Technology International Cooperation of China under Grant No. 2014DFR50820 and the Collaborative Innovation Center of Non-ferrous Metals, Henan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Zhang.

Ethics declarations

Conflict of interest

All of the authors declare that they have no financial and personal relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, K., Cui, J. et al. Effect of ultrasonic vibration on the interfacial IMC three-dimensional morphology and mechanical properties of Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu halogen free solder joints. J Mater Sci: Mater Electron 29, 18828–18839 (2018). https://doi.org/10.1007/s10854-018-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0008-y

Navigation