Skip to main content
Log in

Harsh service environment effects on the microstructure and mechanical properties of Sn–Ag–Cu-1 wt% nano-Al solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the electrical and mechanical performances of eutectic Sn-3Ag-0.5Cu (wt%) solder with the addition of Al nanoparticles. The study revealed that the elastic moduli, electrical resistivity and damping properties of such solder alloy were improved. Further, interfacial reaction phenomena on Au/Ni-plated Cu pad ball grid array substrate during isothermal aging and thermal cycle was evaluated in terms of the formation and growth kinetics of intermetallic compound (IMC) layer. A structural analysis confirmed that at their interfaces a ternary (Cu, Ni)-Sn IMC layer was adhered at the substrate surface. The thickness of this IMC layer was increased with increasing the duration of the isothermal aging and thermal cycle without any defects. In addition, the formation of Ag3Sn, Cu6Sn5, Sn–Al–Ag and AuSn4 IMC phases were evenly distributed in the solder matrix which acts as the second phase reinforcement. The measured shear strength and microhardness indicated that the exposure of the solder joints to the thermal cycles make the joints degraded faster than the situation in isothermal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.X. Li, M. Gupta, Adv. Eng. Mater. 7(11), 1049 (2005)

    Article  Google Scholar 

  2. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci. Mater. Electron. 22, 315 (2011)

    Article  Google Scholar 

  3. F.J. Wang, Z.S. Yu, K. Qi, J. Alloys Compd. 438, 110 (2007)

    Article  Google Scholar 

  4. A.K. Gain, Y.C. Chan, W.K.C. Yung, Mater. Sci. Eng. B 162, 92 (2009)

    Article  Google Scholar 

  5. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  6. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  7. A.K. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 3982 (2016)

    Article  Google Scholar 

  8. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  9. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  Google Scholar 

  10. W.M. Xiao, Y.W. Shi, G.C. Xu, R. Ren, F. Guo, Z.D. Xia, Y.P. Lei, J. Alloys Compd. 472, 198 (2009)

    Article  Google Scholar 

  11. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011)

    Article  Google Scholar 

  12. Y.C. Chan, D. Yang, Prog. Mater Sci. 55, 428 (2010)

    Article  Google Scholar 

  13. H.Y. Hsiao, C. Chen, Appl. Phys. Lett. 94, 092107 (2009)

    Article  Google Scholar 

  14. M.F. Abdulhamid, C. Basaran, J. Electron. Packag. 131, 1 (2009)

    Article  Google Scholar 

  15. T.T. Bao, Y. Kim, J. Lee, J.-G. Lee, Mater. Trans. 51(12), 2145 (2010)

    Article  Google Scholar 

  16. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, G. Ennas, J. Alloys Compd. 623, 7 (2015)

    Article  Google Scholar 

  17. A. Roshanghias, J. Vrestal, A. Yakymovych, K.W. Richter, H. Ipser, CALPHAD 49, 101 (2015)

    Article  Google Scholar 

  18. J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)

    Article  Google Scholar 

  19. L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014)

    Article  Google Scholar 

  20. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)

    Article  Google Scholar 

  21. K. Kanlayasiri, T. Ariga, Mater. Des. 86, 371 (2015)

    Google Scholar 

  22. A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 7039 (2015)

    Article  Google Scholar 

  23. Y. Tang, G.Y. Li, Y.C. Pan, J. Alloys Compd. 554, 195 (2013)

    Article  Google Scholar 

  24. A.K. Gain, Y.C. Chan, Intermetallics 29, 48 (2012)

    Article  Google Scholar 

  25. S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 481, 167 (2009)

    Article  Google Scholar 

  26. R. Mahmudi, S. Alibabaie, Mater. Sci. Eng. A 559, 421 (2013)

    Article  Google Scholar 

  27. S. Alibabaie, R. Mahmudi, Mater. Des. 39, 397 (2012)

    Article  Google Scholar 

  28. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 506, 216 (2010)

    Article  Google Scholar 

  29. N. Chawla, Inter. Mater. Rev. 54(6), 368 (2009)

    Article  Google Scholar 

  30. S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Intermetallics 33, 8 (2013)

    Article  Google Scholar 

  31. A.A. El-Daly, F. El-Tantawy, A.E. Hammad, M.S. Gaafar, E.H. El-Mossalamy, A.A. Al-ghamdi, J. Alloys Compd. 509, 7238 (2011)

    Article  Google Scholar 

  32. N.A.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, H. Arof, J. Alloys Compd. 599, 114 (2014)

    Article  Google Scholar 

  33. W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering: an Introduction, 9th edn. (Willey, Singapore, 2013)

    Google Scholar 

  34. P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458 (2009)

    Article  Google Scholar 

  35. S.H. Chang, S.K. Wu, Scripta Mater. 63, 957 (2010)

    Article  Google Scholar 

  36. Y. Sutou, T. Omori, N. Koeda, R. Kainuma, K. Ishida, Mater. Sci. Eng. A 438–440, 743 (2006)

    Article  Google Scholar 

  37. J. Zhang, R.J. Perez, E.J. Lavernia, J. Mater. Sci. 28, 2395 (1993)

    Article  Google Scholar 

  38. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mat. Sci. Eng. R 49(1–2), 1 (2005)

    Article  Google Scholar 

  39. J.W. Yoon, S.W. Kim, S.B. Jung, J. Alloys Compd. 392, 247 (2005)

    Article  Google Scholar 

  40. A.K. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 7524 (2016)

    Article  Google Scholar 

  41. K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, J.K. Kivilahti, J. Appl. Phys. 89, 4843 (2001)

    Article  Google Scholar 

  42. A.K. Gain, Y.C. Chan, Microelectron. Reliab. 54, 945 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by The University of New South Wales (UNSW) for the project InfoEd Ref: RG124326. The authors would like to thank EPA centre staff for using the facility to do the experiment. The authors would also like to thank Mr. Tit Wah Chan, Department of Physics and Materials Science, CityU, for helping the damping property measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Harsh service environment effects on the microstructure and mechanical properties of Sn–Ag–Cu-1 wt% nano-Al solder alloy. J Mater Sci: Mater Electron 27, 11273–11283 (2016). https://doi.org/10.1007/s10854-016-5250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5250-6

Keywords

Navigation