Skip to main content
Log in

Electrical and optoelectronic properties for devices that use MoS2 deposited on Si substrates with and without (NH4)2S x treatment by chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To fabricate a MoS2/Si device, layers of MoS2 are directly deposited on an n-type Si (n-Si) substrate with/without (NH4)2S x treatment by chemical vapor deposition (CVD). X-ray photoelectron spectroscopy, Hall-effect measurement system, field emission scanning electron microscopy and Raman spectra are employed to characterize the morphology, electrical properties and structure of the MoS2 samples. The MoS2 thin film that is directly deposited on the (NH4)2S x -treated n-Si substrate exhibits n-type behavior and the MoS2/(NH4)2S x -treated n-Si device exhibits stable rectification behavior. It is found that the thermionic emission model is the dominant process in this fabricated MoS2/(NH4)2S x -treated n-Si device. The MoS2/(NH4)2S x -treated n-Si device exhibits high sensitivity to solar irradiation. Because of the value of ideality factor of 1.6 for the MoS2/(NH4)2S x -treated n-Si devices, the enhanced sensitivity is due to the existence of the sulfurated layer at the MoS2/n-Si interface. On the other hand, there were no MoS2 thin films on the n-Si substrate without (NH4)2S x treatment. This observation shows the importance of S–Si bonds on the (NH4)2S x -treated n-Si surface for the CVD growth process. These results demonstrate direct and simple growth of MoS2 on Si, which can be of high importance in future electronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.M. Wang, Materials, Physics, and Devices. (Springer, Berlin, 2013)

    Google Scholar 

  2. L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, W. Zhang, Electrical and photovoltaic characteristics of MoS2/Si p-n. junctions. J. Appl. Phys. 117, 114502 (2015)

    Article  Google Scholar 

  3. Y.J. Lin, J.J. Zeng, H.C. Chang, Temperature-dependent electrical properties for graphene Schottky contact on n-type Si with and without sulfide treatment. Appl. Phys. A 118, 353–359 (2015)

    Article  Google Scholar 

  4. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  5. N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P.M. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102, 123105 (2013)

    Article  Google Scholar 

  6. P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)

    Article  Google Scholar 

  7. A. Schumacher, L. Scandella, N. Kruse, R. Prins, Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf. Sci. Lett. 289, L595-L598 (1993)

    Google Scholar 

  8. Y.H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.T. Lin, J.K. Huang, M.T. Chang, C.S. Chang, M. Dresselhaus, T. Palacios, L.J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)

    Article  Google Scholar 

  9. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012)

    Article  Google Scholar 

  10. W.K. Hoffman, Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J. Mater. Sci. 23, 3981–3986 (1988)

    Article  Google Scholar 

  11. X. Ma, M. Shi, Thermal evaporation deposition of few-layer MoS2 films. Nano-Micro Lett. 5, 135–139 (2013)

    Article  Google Scholar 

  12. M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102, 193107 (2013)

    Article  Google Scholar 

  13. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, X. Bai, Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano. 8, 6024–6030 (2014)

    Article  Google Scholar 

  14. A. Sanne, R. Ghosh, A. Rai, H.C.P. Movva, A. Sharma, R. Rao, L. Mathew, S.K. Banerjee, Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Appl. Phys. Lett. 106, 062101 (2015)

    Article  Google Scholar 

  15. M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C. Wu, L.J. Li, L.J. Chen, J.H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    Article  Google Scholar 

  16. T.H. Su, Y.J. Lin, Interface modification of MoS2/SiO2 leading to conversion of conduction type of MoS2. Appl. Sur. Sci. 387, 661–665 (2016)

    Article  Google Scholar 

  17. Y.J. Lin, T.H. Su, SiO2 substrate passivation effects on the temperature-dependent electrical properties of MoS2 prepared by the chemical vapor deposition method. J. Mater. Sci.: Mater. Electron. 28, 10106–10111 (2017)

    Google Scholar 

  18. M.R. Laskar, L. Ma, S. Kannappan, P.S. Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, S. Rajan, Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 102, 252108 (2013)

    Article  Google Scholar 

  19. Y.J. Lin, T.H. Su, S.M. Chen, Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method. J. Mater. Sci.: Mater. Electron. 28, 14430–14435 (2017)

    Google Scholar 

  20. D. Fu, J. Zhou, S. Tongay, K. Liu, W. Fan, T.K. Liu, J. Wu, Mechanically modulated tunneling resistance in monolayer MoS2. Appl. Phys. Lett. 103, 183105 (2013)

    Article  Google Scholar 

  21. C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P.J. Shamberger, M.E. McConney, R.D. Naguy, A.A. Voevodin, Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014)

    Article  Google Scholar 

  22. R. Addou, S. McDonnell, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C.L. Hinkle, M. Quevedo-Lopez, H.N. Alshareef, L. Colombo, J.W.P. Hsu, R.M. Wallace, Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015)

    Article  Google Scholar 

  23. A. Hu, W. Wang, Q. Xu, (NH4)2S treatment of the Si (100) surface and its effects on Al/Si Schottky barrier heights. J. Semicond. 30, 084001 (2009)

    Article  Google Scholar 

  24. G.M. Cai, J.K. Jian, X.L. Chen, M. Lei, W.Y. Wang, Regular hexagonal MoS2 microflakes grown from MoO3 precursor. Appl. Phys. A 89, 783–788 (2007)

    Article  Google Scholar 

  25. Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, H.C. Chang, Capacitance–voltage and current–voltage characteristics of Au Schottky contact on n-type Si with a conducting polymer. J. Phys. D 42, 165104 (2009)

    Article  Google Scholar 

  26. D.A. Neamen, Electronic Circuit Analysis and Design, 2nd edn. (Boston, McGraw-Hill, 2002).

    Google Scholar 

  27. R.A. Ismail, F.F. Rashid, M.S. Tariq, Preparation and characteristics study CuAlO2/Si heterojunction photodetector by pulsed laser deposition. Appl. Phys. A 28, 6889–6896 (2017)

    Google Scholar 

  28. S. Sönmezoğlu, Current transport mechanism of n-TiO2/p-ZnO heterojunction diode. Appl. Phys. Express 4, 104104 (2011)

    Article  Google Scholar 

  29. S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, M. Can, Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode. Solid State Sci. 12, 706–711 (2010)

    Article  Google Scholar 

  30. S. Sönmezoğlu, Ö.A. Sönmezoğlu, G. Çankaya, A. Yıldırım, N. Serin, Electrical characteristics of DNA-based metal-insulator-semiconductor structures. J. Appl. Phys. 107, 124518 (2010)

    Article  Google Scholar 

  31. Y.J. Lin, Comment on “Schottky contact on a ZnO (0001) single crystal with conducting polymer”. [Appl. Phys. Lett 91, 142113 (2007)]. Appl. Phys. Lett. 92, 046101 (2008)

    Article  Google Scholar 

  32. T.U. Kampen, Electronic structure of organic interfaces–a case study on perylene derivatives. Appl. Phys. A 82, 457–470 (2006)

    Article  Google Scholar 

  33. A. Mekki, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, R.K. Gupta, K. Harrabi, W.A. Farooq, F. El-Tantawy, F. Yakuphanoglu, Graphene controlled organic photodetectors. Synth. Met. 217, 43–56 (2016)

    Article  Google Scholar 

  34. R.S. Chen, T.H. Yang, H.Y. Chen, L.C. Chen, K.H. Chen, Y.J. Yang, C.H. Su, C.R. Lin, High-gain photoconductivity in semiconducting InN nanowires. Appl. Phys. Lett. 95, 162112 (2009)

    Article  Google Scholar 

  35. J.H. Jun, H. Seong, K. Cho, B.M. Moon, S. Kim, Ultraviolet photodetectors based on ZnO nanoparticles. Ceram. Int. 35, 2797–2801 (2009)

    Article  Google Scholar 

  36. B. Polyakov, B. Daly, J. Prikulis, V. Lisauskas, B. Vengalis, M.A. Morris, J.D. Holmes, D. Erts, High-density arrays of germanium nanowire photoresistors. Adv. Mater. 18, 1812–1816 (2006)

    Article  Google Scholar 

  37. F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, B. Sun, Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. ACS Appl. Mater. Interfaces 5, 4678–4684 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract Nos. 103-2112-M-018-003-MY3 and 106-2112-M-018-001-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, TH., Wu, CL., Chang, HC. et al. Electrical and optoelectronic properties for devices that use MoS2 deposited on Si substrates with and without (NH4)2S x treatment by chemical vapor deposition. J Mater Sci: Mater Electron 29, 351–356 (2018). https://doi.org/10.1007/s10854-017-7923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7923-1

Navigation