Skip to main content
Log in

Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To fabricate a MoS2/Si device, layers of MoS2 are directly deposited on an n-type Si substrate by chemical vapor deposition (CVD). No transfer processes are needed. The MoS2 thin film that is deposited on the n-type Si substrate exhibits p-type behavior and the MoS2/Si device exhibits stable rectification behavior. It is found that the thermionic emission–diffusion model is the dominant process in this fabricated MoS2/Si device. The MoS2/Si device also exhibits high sensitivity to solar irradiation. Because of the low reflectance values for the MoS2/Si samples, the enhanced sensitivity is due to high external light injection efficiency. This study provides valuable scientific information for multiple layered MoS2 films for other electronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.M. Wang, MoS 2 : Materials, Physics, and Devices. (Springer, Berlin, 2013)

    Google Scholar 

  2. L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, W. Zhang, Electrical and photovoltaic characteristics of MoS2/Si p-njunctions. J. Appl. Phys. 117, 114502 (2015)

    Article  Google Scholar 

  3. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  4. N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P.M. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102, 123105 (2013)

    Article  Google Scholar 

  5. P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)

    Article  Google Scholar 

  6. A. Schumacher, L. Scandella, N. Kruse, R. Prins, Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf. Sci. Lett. 289, L595–L598 (1993)

    Google Scholar 

  7. Y.H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.T. Lin, J.K. Huang, M.T. Chang, C.S. Chang, M. Dresselhaus, T. Palacios, L.J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)

    Article  Google Scholar 

  8. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012)

    Article  Google Scholar 

  9. W.K. Hoffman, Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J. Mater. Sci. 23, 3981–3986 (1988)

    Article  Google Scholar 

  10. X. Ma, M. Shi, Thermal evaporation deposition of few-layer MoS2 films. Nano-Micro Lett. 5, 135–139 (2013)

    Article  Google Scholar 

  11. M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102, 193107 (2013)

    Article  Google Scholar 

  12. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, X. Bai, Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2with tunable grain sizes. ACS Nano 8, 6024–6030 (2014)

    Article  Google Scholar 

  13. A. Sanne, R. Ghosh, A. Rai, H.C.P. Movva, A. Sharma, R. Rao, L. Mathew, S.K. Banerjee, Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Appl. Phys. Lett. 106, 062101 (2015)

    Article  Google Scholar 

  14. M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C. Wu, L.J. Li, L.J. Chen, J.H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    Article  Google Scholar 

  15. A. Rehman, M.F. Khan, M.A. Shehzad, S. Hussain, M.F. Bhopal, S.H. Lee, J. Eom, Y. Seo, J. Jung, S.H. Lee, n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces 8, 29383–29390 (2016)

    Article  Google Scholar 

  16. S.K. Pradhan, B. Xiao, A.K. Pradhan, Enhanced photo-responseinp-Si/MoS2 heterojunction-based solar cells. Sol. Energy Mater. Solar Cells 144, 117–127 (2016)

    Article  Google Scholar 

  17. D. Fu, J. Zhou, S. Tongay, K. Liu, W. Fan, T.K. Liu, J. Wu, Mechanically modulated tunneling resistance in monolayer MoS2. Appl. Phys. Lett. 103, 183105 (2013)

    Article  Google Scholar 

  18. C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P.J. Shamberger, M.E. McConney, R.D. Naguy, A.A. Voevodin, Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014)

    Article  Google Scholar 

  19. M.R. Laskar, L. Ma, S. Kannappan, P.S. Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, S. Rajan, Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 102, 252108 (2013)

    Article  Google Scholar 

  20. R. Addou, S. McDonnell, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C.L. Hinkle, M. Quevedo-Lopez, H.N. Alshareef, L. Colombo, J.W.P. Hsu, R.M. Wallace, Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015)

    Article  Google Scholar 

  21. G.M. Cai, J.K. Jian, X.L. Chen, M. Lei, W.Y. Wang, Regular hexagonal MoS2 microflakes grown fromMoO3 precursor. Appl. Phys. A 89, 783–788 (2007)

    Article  Google Scholar 

  22. R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, S. Santucci, XPS studies on SiO x thin films. Appl. Surf. Sci. 70/71, 222–225 (1993)

    Article  Google Scholar 

  23. O. Malik, F.J. De la Hidalga-W, C. Zúũiga-I, G. Ruiz-T, Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives. J. Non-Crystalline Solids 354, 2472–2477 (2008)

    Article  Google Scholar 

  24. M.R. Laskar, D.N. Nath, L. Ma, E.W. Lee II, C.H. Lee, T. Kent, Z. Yang, R. Mishra, M.A. Roldan, J. Idrobo, S.T. Pantelides, S.J. Pennycook, R.C. Myers, Y. Wu, S. Rajan, p-type doping of MoS2 thin films using Nb. Appl. Phys. Lett. 104, 092104 (2014)

    Article  Google Scholar 

  25. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    Article  Google Scholar 

  26. S. Ghatak, A.N. Pal, A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011)

    Article  Google Scholar 

  27. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  Google Scholar 

  28. S. Sönmezoğlu, Current transport mechanism of n-TiO2/p-ZnO heterojunction diode, Appl. Phys. Express 4, 104104 (2011)

    Article  Google Scholar 

  29. S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, M. Can, Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode. Solid State Sci. 12, 706–711 (2010)

    Article  Google Scholar 

  30. S. Sönmezoğlu, Ö.A. Sönmezoğlu, G. Çankaya, A. Yıldırım, N. Serin, Electrical characteristics of DNA-based metal-insulator-semiconductor structures. J. Appl. Phys. 107, 124518 (2010)

    Article  Google Scholar 

  31. J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8, 3973–3977 (2008)

    Article  Google Scholar 

  32. A. Mekki, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, R.K. Gupta, K. Harrabi, W.A. Farooq, F. El-Tantawy, F. Yakuphanoglu, Graphene controlled organic photodetectors. Synth. Met. 217, 43–56 (2016)

    Article  Google Scholar 

  33. R.S. Chen, T.H. Yang, H.Y. Chen, L.C. Chen, K.H. Chen, Y.J. Yang, C.H. Su, C.R. Lin, High-gain photoconductivity in semiconducting InN nanowires. Appl. Phys. Lett. 95, 162112 (2009)

    Article  Google Scholar 

  34. J.H. Jun, H. Seong, K. Cho, B.M. Moon, S. Kim, Ultraviolet photodetectors based on ZnO nanoparticles. Ceram. Int. 35, 2797–2801 (2009)

    Article  Google Scholar 

  35. B. Polyakov, B. Daly, J. Prikulis, V. Lisauskas, B. Vengalis, M.A. Morris, J.D. Holmes, D. Erts, High-density arrays of germanium nanowire photoresistors. Adv. Mater. 18, 1812–1816 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 103-2112-M-018-003-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YJ., Su, TH. & Chen, SM. Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method. J Mater Sci: Mater Electron 28, 14430–14435 (2017). https://doi.org/10.1007/s10854-017-7304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7304-9

Navigation