Skip to main content

Advertisement

Log in

Electronic structure of organic interfaces – a case study on perylene derivatives

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic semiconductors have attracted increasing interest owing to their potential application in various electronic and opto-electronic devices. Here, interfaces play an important role since they are responsible for the accumulation of charge carriers at and the efficiency of charge injection across interfaces. Both mechanisms are determined by the alignment of energy levels at the interface. This report is divided into two parts and presents some of the major physical mechanisms which determine the energy level alignment at interface of thin films of low molecular weight organic semiconductors. In the first part, the origin of interface dipoles, interface states, and surface band bending is discussed. In the second part, investigations on the properties of metal/perylene derivatives/inorganic semiconductor structures give further insight into the mechanisms at work, especially under non-thermal equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burroghs JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 347:539

    Article  ADS  Google Scholar 

  2. Tung CW, van Slyke SA (1987) Appl. Phys. Lett. 51:913

    Article  ADS  Google Scholar 

  3. Frolov SV, Liess M, Lane PA, Gellermann W, Vardeny ZV, Ozaki M, Yoshino K (1997) Phys. Rev. Lett. 78:4285

    Article  ADS  Google Scholar 

  4. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Nature 412:520

    Article  ADS  Google Scholar 

  5. Gelink GH, Geuns TCT, de Leeuw DM (2000) Appl. Phys. Lett. 77:1487

    Article  ADS  Google Scholar 

  6. Sirringhaus H, Tessler N, Friend RH (1998) Science 280:1741

    Article  ADS  Google Scholar 

  7. De Leeuw DM, Blom PWM, Hart CM, Mutsaers CMJ, Drury CJ, Matters M, Termeer H (1997) IEDM Techn. Dig. 331

  8. Lundquist PM, Poga C, DeVoe RG, Jia Y, Moerner WE, Bernal M-P, Coufal H, Grygier RK, Hoffnagle JA, Jefferson CM, MacFairlane RM, Shelby RM, Sincerbox GT (1996) Opt. Lett. 21:890

    Article  ADS  Google Scholar 

  9. Pei Q, Inganäs O (1993) Synth. Met. 57:3730

    Article  Google Scholar 

  10. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Appl. Phys. Lett. 62:585

    Article  ADS  Google Scholar 

  11. Sheats JR, Antoniadis H, Hueschen M, Leonard MW, Milller J, Moon R, Roitman D, Stocking A (1996) Science 273:884

    Article  ADS  Google Scholar 

  12. Gu G, Forrest SR (1998) IEEE J. Sel. Top. Quantum Electron. 4:83

    Article  ADS  Google Scholar 

  13. Forrest SR (1997) Chem. Rev. 97:1793

    Article  Google Scholar 

  14. Burrows PE, Forrest SR (1993) Appl. Phys. Lett. 62:3102

    Article  ADS  Google Scholar 

  15. Taylor RT, Burrows PE, Forrest SR (1997) IEEE Photon. Tech. Lett. 9:365

    Article  ADS  Google Scholar 

  16. Karl N, Günther C (1999) Cryst. Res. Technol. 34:243

    Article  Google Scholar 

  17. Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv. Mater. 11:605

    Article  Google Scholar 

  18. Hill IG, Rajagopal A, Kahn A, Hu Y (1998) Appl. Phys. Lett. 73:662

    Article  ADS  Google Scholar 

  19. Narioka S, Ishii H, Yoshimura D, Sei M, Ouchi Y, Seki K, Hasegawa S, Miyazaki T, Harima Y, Yamashita K (1995) Appl. Phys. Lett. 67:1899

    Article  ADS  Google Scholar 

  20. Ishii H, Seki K (2002) Energy Level Alignment at Organic–Metal Interfaces. In: Salaneck WR, Seki K, Kahn A, Pireaux J-J (eds) Conjugated Polymer and Molecular Interfaces. Marcel Dekker Inc., New York

    Google Scholar 

  21. Chen YC, Cunningham JE, Flynn CP (1984) Phys. Rev. B 30:7217

    ADS  Google Scholar 

  22. Zangwill A (1988) Physics at Surfaces. Cambridge University Press, Cambridge, p 185

    Book  Google Scholar 

  23. Lang ND (1981) Phys. Rev. Lett. 46:842

    Article  ADS  Google Scholar 

  24. Lang ND, Williams AR (1982) Phys. Rev. B 25:2940

    Article  ADS  Google Scholar 

  25. Bagus PS, Staemmler V, Wöll C (2002) Phys. Rev. Lett. 89:096104

    Article  ADS  Google Scholar 

  26. Da Silva JLF, Stampfl C, Scheffler M (2003) Phys. Rev. Lett. 90:066104

    Article  ADS  Google Scholar 

  27. Less KJ, Wison EG (1973) J. Phys. C 6:3110

    Article  ADS  Google Scholar 

  28. Fujihira M, Inokuchi H (1972) Chem. Phys. Lett. 17:554

    Article  ADS  Google Scholar 

  29. Ito E, Oji H, Ishii H, Oichi K, Ouchi Y, Seki K (1998) Chem. Phys. Lett. 287:137

    Article  ADS  Google Scholar 

  30. Ishii H, Morikawa E, Tang SJ, Yoshimura D, Ito E, Okudeira KK, Miyamae T, Hasegawa S, Sprunger PT, Ueno N, Seki K, Saile V (1999) J. Electron. Spectrosc. Relat. Phenom. 101:559

    Article  Google Scholar 

  31. Yoshimura D, Ishii H, Ouchi Y, Ito E, Miyamae T, Hasegawa S, Okudeira KK, Ueno N, Seki K (1999) Phys. Rev. B 60:9046

    Article  ADS  Google Scholar 

  32. Mui C, Han JH, Wang GT, Musgrave CB, Bent SF (2002) J. Am. Chem. Soc. 124:4027

    Article  Google Scholar 

  33. Wang GT, Mui C, Tannaci JF, Filler MA, Musgrave CB, Bent SF (2003) J. Phys. Chem. B 107:4982

    Article  Google Scholar 

  34. Hill IG, Kahn A, Soos ZG, Pascal Jr RA (2000) Chem. Phys. Lett. 327:181

    Article  ADS  Google Scholar 

  35. Silinsh EA, Cápek V (1994) Organic Molecular Craystals: Interaction, Localization, and Transport Phenomena, AIP Press

  36. Slattery DK, Linkous CA, Gruhn N (2000) Polymer Preprints 41:866

    Google Scholar 

  37. Salaneck WR (1978) Phys. Rev. Lett. 40:60

    Article  ADS  Google Scholar 

  38. Hill IG, Kahn A, Soos ZG, Pascal Jr RA (2000) Chem. Phys. Lett. 327:181

    Article  ADS  Google Scholar 

  39. Tsiper EV, Soos ZG, Gao W, Kahn K (2002) Chem. Phys. Lett. 360:47

    Article  ADS  Google Scholar 

  40. Hill IG, Makinen AJ, Kafa ZH (2000) Appl. Phys. Lett. 77:1825

    Article  ADS  Google Scholar 

  41. Knupfer M, Peisert H (2004) Phys. Stat. Solidi A 201:1055

    Article  ADS  Google Scholar 

  42. Okudeira KK, Hasegawa S, Ishii H, Seki K, Harada Y, Ueno N (1999) J. Appl. Phys. 85:6453

    Article  ADS  Google Scholar 

  43. Hill IG, Makinen AJ, Kafa ZH (2000) Appl. Phys. Lett. 77:1825

    Article  ADS  Google Scholar 

  44. Park Y, Choong V-E, Hsieh BR, Tang CW, Wehrmeister T, Müllen K, Gao Y (1997) J. Vac. Sci. Technol. A 15:2574

    Article  ADS  Google Scholar 

  45. Park Y, Choong V-E, Ettedgui E, Gao Y, Hsieh BR, Wehrmeister T, Müllen K (1996) Appl. Phys. Lett. 69:1080

    Article  ADS  Google Scholar 

  46. Ueno N, Sugita K, Koga O, Suzuki S (1983) Jpn. J. Appl. Phys. 22:1613

    Article  ADS  Google Scholar 

  47. Rajagopal A, Kahn A (1998) J. Appl. Phys. Phys. 84:355

    Article  ADS  Google Scholar 

  48. Johansson N, Osada T, Strafström S, Salanek WR, Parente V, dos Santos DA, Crispin X, Bredas LJ (1999) J. Chem. Phys. 11:2157

    Article  ADS  Google Scholar 

  49. Choong V-E, Mason MG, Tang CW, Gao Y (1998) Appl. Phys. Lett. 72:2689

    Article  ADS  Google Scholar 

  50. Hill IG, Schwartz J, Kahn A (2000) Org. Electron. 1:5

    Article  Google Scholar 

  51. Löglund M, Dannetun P, Fredricksson C, Salaneck WR, Bredas JL (1996) Phys. Rev. B 53:16327

    Article  ADS  Google Scholar 

  52. Hirose Y, Kahn A, Aristov V, Soukiassian P, Bulovic V, Forrest SR (1996) Phys. Rev. B 54:13748

    Article  ADS  Google Scholar 

  53. Azuma Y, Akatsuka S, Okudaira KK, Harada Y, Ueno N (2000) J. Appl. Phys. 87:766

    Article  ADS  Google Scholar 

  54. Ertl T, Mack HG, Ziegler C, private communication

  55. Louie SG, Cohen ML (1976) Phys Rev B 13:2461

    Article  ADS  Google Scholar 

  56. Heine V (1965) Phys. Rev. 138:A1689

    Article  ADS  Google Scholar 

  57. Maue AW (1935) Z. Phys. 94:717

    Article  ADS  Google Scholar 

  58. Mönch W (1987) Phys. Rev. Lett. 58:1260

    Article  ADS  Google Scholar 

  59. Mönch W (1996) J. Vac. Sci. Technol. B 14:2985

    Article  Google Scholar 

  60. Vázques H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F, Kahn A. Phys. Rev. Lett., submitted

  61. Hirose Y, Forrest SR, Kahn A (1995) Appl. Phys. Lett. 66:944

    Article  ADS  Google Scholar 

  62. Kendrick C, Kahn A (1998) Surf. Rev. Lett. 5:289

    Article  ADS  Google Scholar 

  63. Glöckler K, Seidel C, Soukopp A, Sokolowski M, Umbach E, Böhringer M, Berndt R, Schneider W-D (1998) Surf. Sci. 405:1

    Article  ADS  Google Scholar 

  64. Stahl U, Gador D, Soukopp A, Fink R, Umbach E (1998) Surf. Sci. 414:423

    Article  ADS  Google Scholar 

  65. Chizhov I, Kahn A, Scoles G (2000) J. Cryst. Growth 208:449

    Article  ADS  Google Scholar 

  66. Kampen TU, Gavrila G, Méndez H, Zahn DRT, Vearey-Roberts AR, Evans DA, Wells J, McGovern I, Braun W (2003) J. Phys.: Condens. Matter 15:2679

    Article  ADS  Google Scholar 

  67. Kera S, Setoyama H, Onoue M, Okudaira KK, Harada Y, Ueno N (2001) Phys. Rev. B 63:15204

    Article  Google Scholar 

  68. Hirose K, Foxman E, Noguchi T, Uda M (1990) Phys. Rev. B 41:6076

    Article  ADS  Google Scholar 

  69. Koch N, Elschner A, Johnson RL, Rabe JP (2005) Appl. Surf. Sci. 244:593

    Article  ADS  Google Scholar 

  70. Hirose Y, Kahn A, Aristov V, Soukiassian P (1996) Appl. Phys. Lett. 68:217

    Article  ADS  Google Scholar 

  71. Hirose Y, Wu CI, Aristov V, Soukiassian P, Kahn A (1997) Appl. Surf. Sci. 113/114:291

    Article  ADS  Google Scholar 

  72. Umbach E, Fink R (2002) In: Agranovich VM, La Rocca GC (eds) Organic Nanocrystals: Science and Applications. Proceedings of the International School of Physics ,,Enrico Fermi“, Course CXLIX. IOS Press, Netherlands, p 233

  73. Dweydari AW, Mee CHB (1973) Phys. Stat. Solidi A 17:247

    Article  ADS  Google Scholar 

  74. Dweydari AW, Mee CHB (1971) Phys. Stat. Solidi A 27:223

    Article  ADS  Google Scholar 

  75. Kampen TU, Park S, Zahn DRT (2002) Appl. Surf. Sci. 190:461

    Article  ADS  Google Scholar 

  76. Rhoderick EH, Williams RH (1988) Metal-Semiconductor Contacts, 2nd ed.. Clarendon, Oxford

    Google Scholar 

  77. Park S, Kampen TU, Zahn DRT, Braun W (2001) Appl. Phys. Lett. 79:4124

    Article  ADS  Google Scholar 

  78. Hudej R, Zavrtanik M, Brownwell JN, Bratina G (2001) Mater. Technol. 35:151

    Google Scholar 

  79. Marktanner J (1995) Ladungsträgerbeweglichkeiten in dünnen organischen Photoleiter- und Halbleiter-Aufdampfschichten, PhD Thesis, Stuttgart

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.U. Kampen.

Additional information

PACS

73.20.-r; 73.40.-c; 79.60.Jv; 79.60.Fr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampen, T. Electronic structure of organic interfaces – a case study on perylene derivatives. Appl. Phys. A 82, 457–470 (2006). https://doi.org/10.1007/s00339-005-3368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3368-0

Keywords

Navigation