Skip to main content
Log in

Effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties for sol–gel grown MoS2/Si nanowire/Si devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties of a MoS2/Si nanowire (SiNW)/n-Si device are studied. The MoS2 thin films are prepared using the sol–gel method. The thermionic emission–diffusion model is the dominant process in the MoS2/SiNW/n-Si device when there is no H2O2 treatment. However, carrier transport in MoS2/SiNW/n-Si devices that are subject to H2O2 treatment is dominated by thermionic emission, so it demonstrates reliable rectification. Passivation of the SiNW surface increases the responsivity to solar irradiation. There is a low trap density at the MoS2/SiNW interfaces so the increase in photocurrent density for the MoS2/SiNW/n-Si device that is subject to H2O2 treatment is due to greater internal power conversion efficiency. The photo-response results for MoS2/SiNW/n-Si devices that are subject to (are not subject to) H2O2 treatment confirm that the decay in the photocurrent is due to the dominance of long-lifetime (short-lifetime) charge trapping. MoS2/SiNW/n-Si devices that are subject to H2O2 treatment exhibit reliable responsivity to solar irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiom. 1, 33–44 (2015)

    Google Scholar 

  2. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A.R. Polu, J. Madhavan, M. Ashokkumar, Recent advances in MoS2 nanostructured materials for energy and environmental applications: a review. J. Solid State Chem. 252, 43–71 (2017)

    CAS  Google Scholar 

  3. Z. He, W. Que, Molybdenum disulfide nanomaterials: structures, properties, synthesis andrecent progress on hydrogen evolution reaction. Appl. Mater. Today 3, 23–56 (2016)

    Google Scholar 

  4. L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, W. Zhang, Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 117, 114502 (2015)

    Google Scholar 

  5. A. Rehman, M.F. Khan, M.A. Shehzad, S. Hussain, M.F. Bhopal, S.H. Lee, J. Eom, Y. Seo, J. Jung, S.H. Lee, n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces 8, 29383–29390 (2016)

    CAS  Google Scholar 

  6. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    CAS  Google Scholar 

  7. N.R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P.M. Ajayan, L. Balicas, Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 102, 123105 (2013)

    Google Scholar 

  8. P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)

    CAS  Google Scholar 

  9. A. Schumacher, L. Scandella, N. Kruse, R. Prins, Single-layer MoS 2 on mica: studies by means of scanning force microscopy. Surf. Sci. Lett. 289, L595–L598 (1993)

    CAS  Google Scholar 

  10. Y.H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.T. Lin, J.K. Huang, M.T. Chang, C.S. Chang, M. Dresselhaus, T. Palacios, L.J. Li, J. Kong, Synthesis and transfer of single layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)

    CAS  Google Scholar 

  11. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012)

    CAS  Google Scholar 

  12. W.K. Hoffman, Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J. Mater. Sci. 23, 3981–3986 (1988)

    Google Scholar 

  13. X. Ma, M. Shi, Thermal evaporation deposition of few-layer MoS2 films. Nano-Micro Lett. 5, 135–139 (2013)

    CAS  Google Scholar 

  14. M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102, 193107 (2013)

    Google Scholar 

  15. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, X. Bai, Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8, 6024–6030 (2014)

    CAS  Google Scholar 

  16. A. Sanne, R. Ghosh, A. Rai, H.C.P. Movva, A. Sharma, R. Rao, L. Mathew, S.K. Banerjee, Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Appl. Phys. Lett. 106, 062101 (2015)

    Google Scholar 

  17. M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C. Wu, L.J. Li, L.J. Chen, J.H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    CAS  Google Scholar 

  18. S.K. Pradhan, B. Xiao, A.K. Pradhan, Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells. Sol. Energy Mater. Sol. Cells 144, 117–127 (2016)

    CAS  Google Scholar 

  19. Y.J. Lin, T.H. Su, SiO2 substrate passivation effects on the temperature-dependent electrical properties of MoS2 prepared by the chemical vapor deposition method. J. Mater. Sci.: Mater. Electron. 28, 10106–10111 (2017)

    CAS  Google Scholar 

  20. Y.J. Lin, T.H. Su, S.M. Chen, Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method. J. Mater. Sci.: Mater. Electron. 28, 14430–14435 (2017)

    CAS  Google Scholar 

  21. F.L. Li, H.J. Zhang, Synthesis of hollow sphere and 1D structural materials by sol–gel process. Materials 10, 995 (2017)

    Google Scholar 

  22. X. Guo, Z. Wang, W. Zhu, H. Yang, The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance. RSC Adv. 7, 9009–9014 (2017)

    CAS  Google Scholar 

  23. M.F. Hainey, J.M. Redwing, Aluminum-catalyzed silicon nanowires: growth methods, properties, and applications. Appl. Phys. Rev. 3, 040806 (2016)

    Google Scholar 

  24. X. Wang, K.Q. Peng, X.J. Pan, X. Chen, Y. Yang, L. Li, X.M. Meng, W.J. Zhang, S.T. Lee, High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem. Int. Ed. 50, 9861–9865 (2011)

    CAS  Google Scholar 

  25. M. Fanciulli, M. Belli, S. Paleari, A. Lamperti, M. Sironi, A. Pizio, Defects and dopants in silicon nanowires produced by metal-assisted chemical etching. ECS J. Solid State Sci. Technol. 5, P3138–P3141 (2016)

    CAS  Google Scholar 

  26. C.H. Ruan, Y.J. Lin, High Schottky barrier height of Au contact on Si-nanowire arrays with sulfide treatment. J. Appl. Phys. 114, 143710 (2013)

    Google Scholar 

  27. J.J. Zeng, Y.J. Lin, Schottky barrier inhomogeneity for graphene/Si-nanowire arrays/n-type Si Schottky diodes. Appl. Phys. Lett. 104, 133506 (2014)

    Google Scholar 

  28. Y. Dan, K. Seo, K. Takei, J.H. Meza, A. Javey, K.B. Crozier, Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 11, 2527–2532 (2011)

    CAS  Google Scholar 

  29. H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, T. Ye, Influence of nanowires length on performance of crystalline silicon solar cell. Appl. Phys. Lett. 98, 151116 (2011)

    Google Scholar 

  30. C.Y. Wu, Y.J. Lin, Responsivity to solar irradiation and the behavior of carrier transports for MoS2/Si and MoS2/Si nanowires/Si devices. J. Mater. Sci.: Mater. Electron. 28, 18331–18336 (2017)

    CAS  Google Scholar 

  31. W.M. Cho, Y.J. Lin, H.C. Chang, Y.H. Chen, Electronic transport for polymer/Si-nanowire arrays/n-type Si diodes with and without Si-nanowire surface passivation. Microelectron. Eng. 108, 24–27 (2013)

    CAS  Google Scholar 

  32. T.H. Su, C.H. Chiang, Y.J. Lin, Temperature dependence of current-voltage characteristics of MoS2/Si devices prepared by the chemical vapor deposition method. Microelectron. Reliab. 78, 374–378 (2017)

    CAS  Google Scholar 

  33. M.R. Laskar, L. Ma, S. Kannappan, P.S. Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, S. Rajan, Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 102, 252108 (2013)

    Google Scholar 

  34. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011)

    CAS  Google Scholar 

  35. Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, H.C. Chang, Capacitance–voltage and current–voltage characteristics of Au Schottky contact on n-type Si with a conducting polymer. J. Phys. D: Appl. Phys. 42, 165104 (2009)

    Google Scholar 

  36. G.R. He, Y.J. Lin, H.C. Chang, Y.H. Chen, Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes. Thin Solid Films 525, 154–157 (2012)

    CAS  Google Scholar 

  37. O. Malik, F.J. De la Hidalga-W, C. Zúũiga-I, G. Ruiz-, Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives. J. Non-Cryst. Solids 354, 2472–2477 (2008). T.

    CAS  Google Scholar 

  38. A.D. Bartolomeo, F. Giubileo, G. Luongo, L. Iemmo, N. Martucciello, G. Niu, M. Fraschke, O. Skibitzki, T. Schroeder, G. Lupina, Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device. 2D Mater. 4, 015024 (2017)

    Google Scholar 

  39. H.Z. Lin, Y.J. Lin, Electrical conduction mechanisms in the temperature-dependent current-voltage characteristics of poly(3-hexylthiophene)/n-type Si devices. Microelectron. Reliab. 65, 60–63 (2016)

    CAS  Google Scholar 

  40. M.E. Aydin, F. Yakuphanoglu, Electrical characterization of inorganic-on-organic diode based InP and poly(3,4-ethylenedioxithiophene)/poly(styrenesulfonate) (PEDOT:PSS). Microelectron. Reliab. 52, 1350–1354 (2012)

    Google Scholar 

  41. F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, B. Sun, Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. ACS Appl. Mater. Interfaces 5, 4678–4684 (2013)

    CAS  Google Scholar 

  42. M. Green, Recent developments in photovoltaics. Sol. Energy 76, 3–8 (2004)

    CAS  Google Scholar 

  43. S. Sönmezoğlu, Current transport mechanism of n-TiO2/p-ZnO heterojunction diode. Appl. Phys. Express 4, 104104 (2011)

    Google Scholar 

  44. S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, M. Can, Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode. Solid State Sci. 12, 706–711 (2010)

    Google Scholar 

  45. S. Sönmezoğlu, Ö.A. Sönmezoğlu, G. Çankaya, A. Yıldırım, N. Serin, Electrical characteristics of DNA-based metal-insulator-semiconductor structures. J. Appl. Phys. 107, 124518 (2010)

    Google Scholar 

  46. J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8, 3973–3977 (2008)

    CAS  Google Scholar 

  47. Ş Karataş, Ş Altındal, Analysis of I–V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Mater. Sci. Eng. B 122, 133–139 (2005)

    Google Scholar 

  48. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    CAS  Google Scholar 

  49. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid State Electron. 44, 663–671 (2000)

    CAS  Google Scholar 

  50. Y.J. Lin, C.H. Ruan, Y.J. Chu, C.J. Liu, F.H. Lin, Correlation between interface modification and rectifying behavior of p-type Cu2ZnSnS4/n-type Si diodes. Appl. Phys. A 121, 103–108 (2015)

    CAS  Google Scholar 

  51. B.C. Huang, Y.J. Lin, Effect of the induced electron traps by oxygen plasma treatment on transfer characteristics of organic thin film transistors. Appl. Phys. Lett. 99, 113301 (2011)

    Google Scholar 

  52. G. Gu, M.G. Kane, J.E. Doty, A.H. Firester, Electron traps and hysteresis in pentacene-based organic thin-film transistors. Appl. Phys. Lett. 87, 243512 (2005)

    Google Scholar 

  53. Y.J. Lin, C.F. You, C.Y. Chuang, Carrier transport and charge detrapping in poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate)/n-type Si and polyaniline/n-type Si diodes. ECS J. Solid State Sci. Technol. 2, Q31–Q33 (2013)

    CAS  Google Scholar 

  54. R.S. Aga Jr., D. Johar, A. Ueda, Z. Pan, W.E. Collins, R. Mu, K.D. Singer, J. Shen, Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot. Appl. Phys. Lett. 91, 232108 (2007)

    Google Scholar 

  55. J.H. Lin, J.J. Zeng, Y.C. Su, Y.J. Lin, Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si. Appl. Phys. Lett. 100, 153509 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CY., Lin, YJ., Chang, HC. et al. Effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties for sol–gel grown MoS2/Si nanowire/Si devices. J Mater Sci: Mater Electron 29, 6032–6039 (2018). https://doi.org/10.1007/s10854-018-8577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8577-3

Navigation