Skip to main content

Advertisement

Log in

Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of grain size on dielectric properties, energy-storage performance and electrocaloric effect (ECE) of Pb0.85Ba0.05La0.10(Zr0.90Ti0.10)O3 (PBLZT) antiferroelectric thick films were systematically studied. As the grain size was increased, dielectric constant of the thick films was increased, while their critical breakdown field was decreased. A giant reversible adiabatic temperature change of ∆T = 19.9 °C at room temperature was achieved in the PBLZT AFE thick film with a grain size of 0.59 µm. However, a huge recoverable energy-storage density of 33.6 J/cm3 and a high efficiency of 73 % were observed in the film with the smallest grain size of 0.19 µm at its breakdown field, because of its excellent electric field endurance. In addition, all the samples had a low leakage current density of below 10−6 A/cm2 at room temperature. These results indicated that our PBLZT AFE thick films could be a promising candidate for applications in high energy-storage density capacitors and solid-cooling devices by properly controlling their grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Kittel, Theory of antiferroelectric crystal. Phys. Rev. 82, 729–732 (1951)

    Article  Google Scholar 

  2. E. Sawaguchi, H. Maniwa, S. Hoshino, Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951)

    Article  Google Scholar 

  3. G. Shirane, E. Sawaguchi, Y. Takagi, Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951)

    Article  Google Scholar 

  4. X.H. Hao, Y. Wang, L. Zhang, L.W. Zhang, S.L. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013)

    Article  Google Scholar 

  5. Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)

    Article  Google Scholar 

  6. Z.K. Xu, J.W. Zhai, W.H. Chan, Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl. Phys. Lett. 88, 132908 (2006)

    Article  Google Scholar 

  7. S.S. Sengupta, D. Roberts, J.F. Li, M.C. Kim, D.A. Payne, Field-induced phase switching and electrical deiven strains in sol-gel derived antiferroelectric (Pb, Nb)(Zr, Sn, Ti)O3 thin films. J. Appl. Phys. 78, 1171–1177 (1995)

    Article  Google Scholar 

  8. Y. Zhao, X.H. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)

    Article  Google Scholar 

  9. X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  10. J. Ge, X.L. Dong, Y. Chen, F. Cao, G.S. Wang, Enhanced polarization switching and energy storage properties of Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with LaNiO3 oxide top Electrodes. Appl. Phys. Lett. 102, 142905 (2013)

    Article  Google Scholar 

  11. M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012)

    Article  Google Scholar 

  12. G.Z. Zhang, D.Y. Zhu, X.S. Zhang, L. Zhang, J.Q. Yi, B. Xie, Y.K. Zeng, Q. Li, Q. Wang, S.L. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 4, 1175–1181 (2015)

    Article  Google Scholar 

  13. B.A. Tuttle, D.A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981)

    Article  Google Scholar 

  14. Z.Q. Hu, B.H. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014)

    Article  Google Scholar 

  15. J. Parui, S.B. Krupanidhi, Electroaloric effect in antiferroelectric PbZrO3 thin films. Phys. Status Solidi RRL 2, 230–232 (2008)

    Article  Google Scholar 

  16. X.F. Chen, F. Cao, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, Dynamic hysteresis and scaling behavior of energy density in dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 Antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 4, 1163–1166 (2012)

    Article  Google Scholar 

  17. S. Kar-Narayan, N.D. Mathur, Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl. Phys. Lett. 95, 242903 (2009)

    Article  Google Scholar 

  18. J. Ge, D. Remiens, J. Costecalde, Y. Chen, X.L. Dong, G.S. Wang, Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations. Appl. Phys. Lett. 103, 162903 (2013)

    Article  Google Scholar 

  19. B.L. Peng, H.Q. Fan, Q. Zhang, A. Giant, Electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987–2992 (2013)

    Article  Google Scholar 

  20. X.H. Hao, J.W. Zhai, Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase. Appl. Phys. Lett. 104, 022902 (2014)

    Article  Google Scholar 

  21. J. Ge, G. Pan, D. Remiens, Y. Chen, F. Cao, X.L. Dong, G.S. Wang, Effect of electrode materials on the scaling behavior of energy density in Pb(Zr0.96Ti0.03)Nb0.01O3 antiferroelectric films. Appl. Phys. Lett. 101, 112905 (2012)

    Article  Google Scholar 

  22. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1–7 (2015)

    Article  Google Scholar 

  23. F.L. Goupil, A.K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, N.M. Alford, Anisotropy of the electrocaloric effect in lead-free relaxor ferroelectrics. Adv. Energy Mater. 4, 1301688 (2014)

    Article  Google Scholar 

  24. L. Zhang, S.L. Jiang, Y.K. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G.Z. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014)

    Article  Google Scholar 

  25. J.H. Qiu, Q. Jiang, Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. J. Appl. Phys. 105, 034110 (2009)

    Article  Google Scholar 

  26. C. Fang, D.X. Zhou, S.P. Gong, Core-shell structure and size effect in barium titanate nanoparticle. Phys. B 406, 1317–1322 (2011)

    Article  Google Scholar 

  27. M. Vrabelj, H. Uršič, Z. Kutnjak, B. Rožič, S. Drnovšek, A. Benčan, V. Bobnar, L. Fulanović, B. Malič, Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3. J. Eur. Ceram. Soc. 36, 75–80 (2016)

    Article  Google Scholar 

  28. H.F. Ji, W. Ren, L.Y. Wang, P. Shi, X.F. Chen, X.Q. Wu, X. Yao, S.T. Lau, Q.F. Zhou, K.K. Shung, Structure and electrical properties of Na0.5Bi0.5TiO3 ferroelectric thick films derived from a polymer modified sol–gel method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2042–2049 (2011)

    Article  Google Scholar 

  29. J.W. Zhai, X. Li, Y. Yao, H. Chen, Growth and characterization of PNZST thin films. Mater. Sci. Eng., B 99, 230–233 (2003)

    Article  Google Scholar 

  30. J.K. Li, X. Yao, Microstructure and electrical properties of Pb(Zr0.52Ti0.48)O3 ferroelectric films on different bottom electrodes. Mater. Lett. 58, 3447–3450 (2004)

    Article  Google Scholar 

  31. X.H. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr, Sn, Ti)O3 antiferroelectric thick films. J. Phys. Chem. C 119, 18877–18885 (2015)

    Article  Google Scholar 

  32. C.R. Cho, W.J. Lee, B.G. Yu, B.W. Kim, Dielectric and ferroelectric response as a function of annealing temperature and film thickness of sol-gel deposited PbZr0.52Ti0.48O3 thin film. J. Appl. Phys. 86, 2700–2711 (1999)

    Article  Google Scholar 

  33. J. Yu, X.J. Meng, J.L. Sun, Z.M. Huang, J.H. Chu, Optical and electrical properties of highly (100)-oriented PbZr1−xTixO3 thin films on the LaNiO3 buffer layer. J. Appl. Phys. 96, 2792–2799 (2004)

    Article  Google Scholar 

  34. C. Bhardwaj, B.S.S. Daniela, D. Kaur, Pulsed laser deposition and characterization of highly tunable (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 thin films grown on LaNiO3/Si substrate. J. Phys. Chem. Solids 74, 94–100 (2013)

    Article  Google Scholar 

  35. S.B. Kang, M.G. Choi, D.J. Jeong, Energy storage properties of nano-grained antiferroelectric (Pb, La)(Zr, Ti)O3 films prepared by aerosol-deposition method. IEEE Trans. Dielect. Electr. Insul. 22, 1477–1482 (2015)

    Article  Google Scholar 

  36. J.S. Lee, S.K. Joo, Analysis of grain-boundary effects on the electrical properties of Pb(Zr, Ti)O3 thin films. Appl. Phys. Lett. 81, 2602–2604 (2002)

    Article  Google Scholar 

  37. X.G. Tang, H.L.W. Chan, Effect of grain size on the electrical properties of (Ba, Ca)(Zr, Ti)O3 relaxor ferroelectric ceramic. J. Appl. Phys. 97, 034109 (2005)

    Article  Google Scholar 

  38. X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004)

    Article  Google Scholar 

  39. B. Pokharela, D. Pandey, Dielectric studies of phase transitions in (Pb1−xBax)ZrO3. J. Appl. Phys. 88, 5364–5373 (2000)

    Article  Google Scholar 

  40. K. Uchino, S. Nomura, Critical exponents of the dielectric costants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (1982)

    Article  Google Scholar 

  41. V.S. Tiwari, N. Singh, D. Pandey, Diffuse ferroelectric transition and relaxational dipolar freezing in (Ba, Sr)TiO3. J. Phys. Condens. Matter. 7, 1441–1460 (1995)

    Article  Google Scholar 

  42. W.L. Zhao, R.Z. Zuo, D.G. Zheng, L.T. Li, Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3–Modified Bi(Mg0.5Ti0.5)O3–PbTiO3 Ferroelectric Ceramics. J. Am. Ceram. Soc. 97, 1855–1860 (2014)

    Article  Google Scholar 

  43. K. Wen, J.H. Qiu, H.L. Ji, K.J. Zhu, J.S. Liu, J. Wang, J.Z. Du, F.L. Zhu, Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3–(1 − x)Pb(Zr0.4Ti0.6)O3 ceramics. J. Mater. Sci. Mater. Electron. 25, 3003–3009 (2014)

    Article  Google Scholar 

  44. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006)

    Article  Google Scholar 

  45. T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon and Breach, London, 1976)

    Google Scholar 

  46. S.G. Lu, Q.M. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009)

    Article  Google Scholar 

  47. E. Defay, S. Crossley, S. Kar-Narayan, X. Moya, N.D. Mathur, The electrocaloric efficiency of ceramic and polymer films. Adv. Mater. 25, 3337–3342 (2013)

    Article  Google Scholar 

  48. J. Hagberg, A. Uusimäki, H. Jantunen, Electrocaloric characteristics in reactive sintered 0.87Pb(Mg1/3Nb2/3)O3–0.13 PbTiO3. Appl. Phys. Lett. 92, 132909 (2008)

    Article  Google Scholar 

  49. Y. Bai, X. Han, L.J. Qiao, Optimized electrocaloric refrigeration capacity in lead-free (1 − x)BaZr0.2Ti0.8O3–xBa0.7Ca0.3TiO3 ceramics. Appl. Phys. Lett. 103, 202903 (2013)

    Article  Google Scholar 

  50. X.Q. Liu, T.T. Chen, Y.J. Wu, X.M. Chen, Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J. Am. Ceram. Soc. 96, 1021–1023 (2013)

    Article  Google Scholar 

  51. S. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X.Y. Li, E. Furman, L.J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc, R. Pirc, Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett. 97, 162904 (2010)

    Article  Google Scholar 

  52. S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, R. Pirc, Electrocaloric effect in ferroelectric polymers. Appl. Phys. A Mater. 107, 559–566 (2012)

    Article  Google Scholar 

  53. M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  54. S. Kar-Narayan, N.D. Mathur, Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys. D Appl. Phys. 43, 032002 (2010)

    Article  Google Scholar 

  55. X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013)

    Article  Google Scholar 

  56. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  Google Scholar 

  57. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)

    Article  Google Scholar 

  58. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, X.R. Zeng, H.T. Huang, Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 Relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl. Mater. Interfaces 7, 13512–13517 (2015)

    Article  Google Scholar 

  59. M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015)

    Article  Google Scholar 

  60. Y. Zhao, X.H. Hao, M. Li, Dielectric properties and energystorage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 601, 112–115 (2014)

    Article  Google Scholar 

  61. Y. Wang, Y.C. Chan, Z.L. Gui, D.P. Webb, L.T. Li, Application of weibull distribution analysis to the dielectric failure of multilayer ceramic capacitors. Mater. Sci. Eng. B 47, 197–203 (1997)

    Article  Google Scholar 

  62. X.L. Wang, L. Zhang, X.H. Hao, S.L. An, High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputterin. Mater. Res. Bull. 65, 73–79 (2015)

    Article  Google Scholar 

  63. S. Tong, B.H. Ma, M. Narayanan, S.S. Liu, R.E. Koritala, U. Balachandran, D.L. Shi, Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces 5, 1474–1480 (2013)

    Article  Google Scholar 

  64. B.H. Ma, S. Chao, M. Narayanan, S.S. Liu, S. Tong, R.E. Koritala, U. Balachandran, Dense PLZT films grown on nickel substrates by PVP-modified sol–gel method. J. Mater. Sci. 48, 1180–1185 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by the Ministry of Sciences and Technology of China through 973-Project (2014CB660811), the National Natural Science Foundation of China (51462027), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1605), the Innovation Guide Fund of Baotou (CX2015-8) and the Innovation Program of Inner Monglia University of Science and Technology (2014QNGG01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Hao, X., Zhang, Q. et al. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. J Mater Sci: Mater Electron 27, 10309–10319 (2016). https://doi.org/10.1007/s10854-016-5114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5114-0

Keywords

Navigation