Skip to main content
Log in

Effect of vacuum annealing temperature on structural, morphological and optical properties of In2S3:Zn films deposited by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc-doped In2S3 thin films have been deposited by spray pyrolysis method at 350 °C on glass substrates with ITO contacts. The samples were sealed under vacuum (10−3 Torr) into a Pyrex tube and then annealed for 2 h at temperatures ranging from 300 to 450 °C with a step of 50 °C. The effect of the annealing temperature (Ta) on structural, morphological and optical properties of the In2S3 films was studied. The films, annealed at Ta ≤ 300 °C, result in films that consist of tetragonal β-In2S3 phase with (220) preferential orientation, while for films annealed at Ta > 300 °C, a structural transition from tetragonal to cubic β-In2S3 occurs with (400) preferential orientation. The film grain size decreases from 42 to 33 nm. The surface morphology analysis reveals that the films annealed at 300 °C present an average roughness of 40 nm. The optical band gap is found to be direct and it decreases with the increase of annealing temperature. A higher optical transmittance of 80 % is obtained at Ta = 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Mathew, M. Gopinath, C.S. Kartha, K.P. Vijayakumar, Y. Kashiwaba, T. Abe, Sol. Energy 84, 888 (2010)

    Article  Google Scholar 

  2. T. John, M. Mathew, C. Kartha, K. Vijayakumar, T. Abe, Y. Kashiwaba, Sol. Energy Mat. Sol. Cells 89, 27 (2005)

    Article  Google Scholar 

  3. N. Barreau, Sol. Energy 83, 363 (2009)

    Article  Google Scholar 

  4. S. Siebentritt, Sol. Energy 77, 767 (2004)

    Article  Google Scholar 

  5. S. Cingarapu, M. Ikenberry, D. Hamal, C. Sorensen, K. Hohn, K. Klabunde, Langmuir 28, 3569 (2012)

    Article  Google Scholar 

  6. L.J. Liu, W.D. Xiang, J.S. Zhong, X.Y. Yang, X.J. Liang, H.T. Liu, W. Cai, J. Alloys Compd. 493, 309 (2010)

    Article  Google Scholar 

  7. H. Spasevska, C.C. Kitts, C. Ancora, G. Ruani, Int. J. Photoenergy 2012, 637943 (2012)

    Article  Google Scholar 

  8. K. Kambas, J. Spyridelis, Mat. Res. Bull. 13, 653 (1978)

    Article  Google Scholar 

  9. A. Timoumi, H. Bouzouita, R. Brini, M. Kanzari, B. Rezig, Appl. Surf. Sci. 253, 306 (2006)

    Article  Google Scholar 

  10. M. Kraini, N. Bouguila, I. Halidou, A. Timoumi, S. Alaya, Mater. Sci. Semicond. Process. 16, 1388 (2013)

    Article  Google Scholar 

  11. B. Kempken, V. Dzhagan, D.R.T. Zahn, M.J.P. Alcocer, I. Kriegel, F. Scotognella, J. Parisi, J. Kolny-Olesiak, RSC Adv. 5, 89577 (2015)

    Article  Google Scholar 

  12. N. Bouguila, A. Timoumi, H. Bouzouita, Eur. Phys. J. Appl. Phys. 65, 20304 (2014)

    Article  Google Scholar 

  13. M. Kraini, N. Bouguila, J. El Ghoul, I. Halidou, S.A. Gomez-Lopera, C. Vázquez-Vázquez, M.A. López-Quintela, S. Alaya, J. Mater. Sci. Mater. Electron. 26, 5774 (2015)

    Article  Google Scholar 

  14. N. Bouguila, A. Timoumi, H. Bouzouita, E. Lacaze, H. Bouchriha, B. Rezig, Eur. Phys. J. Appl. Phys. 63, 20301 (2013)

    Article  Google Scholar 

  15. N. Bouguila, I. Najeh, N.B. Mansour, H. Bouzouita, S. Alaya, J. Mater. Sci. Mater. Electron. 26, 6471 (2015)

    Article  Google Scholar 

  16. M.H.Z. Maha, M. Bagheri Mohagheghi, H. Azimi-Juybari, Thin Solid Films 536, 57 (2013)

    Article  Google Scholar 

  17. M. Mathew, R. Jayakrishnan, P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, J. Appl. Phys. 100, 033504 (2006)

    Article  Google Scholar 

  18. Z. Li, X. Tao, Z. Wu, P. Zhang, Z. Zhang, Ultrason. Sonochem. 16, 221 (2009)

    Article  Google Scholar 

  19. B. Asenjo, C. Sanz, C. Guillén, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, Thin Solid Films 515, 6041 (2007)

    Article  Google Scholar 

  20. N. Barreau, J.C. Bernède, C. Deudon, L. Brohan, S. Marsillac, Thin Solid Films 241, 4 (2002)

    Google Scholar 

  21. P.G.S. Abadi, M.S. Niasari, F. Davar, Superlattices Microstruct. 53, 76 (2013)

    Article  Google Scholar 

  22. B. Cullity, Elements of X-Ray Diffraction (Addision-Wesley, Reading, 1978)

    Google Scholar 

  23. P. Sahay, R. Nath, Sens. Actuators B chem. 2, 654 (2008)

    Article  Google Scholar 

  24. B. Yahmadi, N. Kamoun, C. Guasch, R. Bennaceur, Mater. Chem. Phys. 127, 239 (2011)

    Article  Google Scholar 

  25. R. Ghosh, D. Basak, S. Fujihara, J. Appl. Phys. 96, 2689 (2004)

    Article  Google Scholar 

  26. K. Ravichandran, P. Philominathan, Sol. Energy 82, 1062 (2008)

    Article  Google Scholar 

  27. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103 (2005)

    Article  Google Scholar 

  28. N. Bouguila, M. Kraini, A. Timoumi, I. Halidou, C. Vázquez-Vázquez, M.A. López-Quintela, S. Alaya, J. Mater. Sci. Mater. Electron. 26, 7639 (2015)

    Article  Google Scholar 

  29. N. Revathi, P. Prathap, R.W. Miles, K.T.R. Reddy, Sol. Energy Mater. Sol. Cells 94, 1487 (2010)

    Article  Google Scholar 

  30. S.J. Ikhmyies, R.N. Ahmed-Bitar, Appl. Surf. Sci. 255, 2627 (2008)

    Article  Google Scholar 

  31. A. Forouhi, I. Bloomer, Phys. Rev. B 38, 1865 (1988)

    Article  Google Scholar 

  32. M. Nadeem, W. Ahmed, Turk. J. Phys. 24, 651 (2000)

    Google Scholar 

  33. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  34. S. Ilican, Y. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008)

    Google Scholar 

  35. S. Ilican, Y. Caglar, M. Kindakci, A. Ates, Int. J. Hydrogen Energy 12, 5201 (2009)

    Article  Google Scholar 

  36. C. Lokhande, A. Ubole, P. Patil, Thin Solid Films 302, 1 (1997)

    Article  Google Scholar 

  37. J. Dow, D. Redfield, Phys. Rev. B 5, 594 (1972)

    Article  Google Scholar 

  38. J. El Ghoul, C. Barthou, L. El Mir, Phys. E 44, 1910 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the research and technology center of energy (Tunis, Tunisia) for AFM characterization and USCR-X-Ray Diffraction (Faculté des Sciences de Tunis, Tunisia) for XRD measurements. We gratefully acknowledge Abdessalem Kouki (Faculté des Sciences de Bizerte, Tunisia) for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bouguila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koaib, J., Bouguila, N., Kraini, M. et al. Effect of vacuum annealing temperature on structural, morphological and optical properties of In2S3:Zn films deposited by spray pyrolysis. J Mater Sci: Mater Electron 27, 9216–9225 (2016). https://doi.org/10.1007/s10854-016-4959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4959-6

Keywords

Navigation