Skip to main content
Log in

A study on electrodeposited Co–Mo alloys thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt–Molybdenum (Co–Mo) induced electrodeposition has been studied from a sulphate bath on Ru electrodes at pH 4. The conditions of electrodeposition of Co–Mo alloys were determined using the cyclic voltametry at different ions concentration ratios. The theoretical model of Scharifker-Hills was used to analyse the current transients for studying the first stage of nucleation of Co–Mo alloys. The electrodeposited coatings were analysed by scanning electron microscopy, X-rays diffraction and alternating gradient force magnetometer techniques. The cyclic voltametry shows that the codeposition of Co–Mo alloys was accompanied by concurrent reactions such as the formation of the molybdenum oxides and the hydrogen evolution reaction. For the electrodeposited Co–Mo, the nucleation is in good agreement with the instantaneous nucleation and three-dimensional (3D) diffusion-limited growth. Co–Mo thin films of an hcp structure have been obtained, and the electrodeposition parameters such as the applied potential have a great influence on the structure, morphology and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.V. Myung, D.-Y. Park, B.-Y. Yoo, P.T.A. Sumodjo, J. Magn. Magn. Mater. 265, 189 (2003)

    Article  CAS  Google Scholar 

  2. H.H. Yang, N.V. Myung, J. Yee, D.-Y. Park, B.-Y. Yoo, M. Schwartz, K. Nobe, J.W. Judy, Sens Actuators A Phys 97–98, 88 (2002)

    Article  Google Scholar 

  3. J.W. Judy, R.S. Muller, H.H. Zappe, IEEE J. Microelectromech Syst 4, 162 (1995)

    Article  Google Scholar 

  4. P.L. Cavallotti, A. Vicenzo, M. Bestetti, Surf. Coat. Technol. 76, 169 (2003)

    Google Scholar 

  5. M.R. Khelladi, L. Mentar, A. Azizi, L. Makhloufi, G. Schmerber, A. Dinia, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0784-8

    Google Scholar 

  6. M.R. Khelladi, L. Mentar, A. Azizi, F. Kadirgan, G. Schmerber, A. Dinia, Appl. Surf. Sci. 258, 3907 (2012)

    Article  CAS  Google Scholar 

  7. I. Tabakovic, V. Inturi, S. Riemer, J. Electrochem. Soc. 149, C18 (2002)

    Article  CAS  Google Scholar 

  8. M. Yoshino, Y. Kikuchi, A. Sugiyama, T. Osaka, Electrochem Acta 43, 285 (2000)

    Google Scholar 

  9. Y.K. Kim, H.Y. Son, Y.S. Choi, J. Appl. Phys. 87, 5413 (2000)

    Article  CAS  Google Scholar 

  10. G. Shan, J. Nelson, J. Electrochem. Soc. 152, C190 (2005)

    Article  Google Scholar 

  11. E. Gomez, E. Pellicer, E. Vallés, J. Electroanal. Chem. 580, 238 (2005)

    Article  CAS  Google Scholar 

  12. M. Duch, J. Esteve, E. Gomez, R. Pérez-Castillejos, E. Vallés, J. Electroanal. Chem. 149, C201 (2005)

    Google Scholar 

  13. E. Goméz, E. Pellicer, E. Vallés, J. Electroanal. Chem. 517, 109 (2001)

    Article  Google Scholar 

  14. V.Q. Kinh, E. Chassaing, M. Saurat, Electrodep. Surf. Treat. 3, 205 (1975)

    Article  Google Scholar 

  15. A. Brenner, Electrodeposition of Alloys (Academic Press, New York, 1963)

    Google Scholar 

  16. R. Sonnenfeld, J. Schneier, P.K. Hansma, R.E. White, J.O’.M. Bockris, in Modern Aspect of Electrochemistry, vol. 21, ed. by B.E. Conway (Plenium, New York, 1990)

    Google Scholar 

  17. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applicationins, 2nd edn. (Wiley Inc., New York, 2001)

    Google Scholar 

  18. E. Goméz, E. Pellicer, E. Vallés, J. Electroanal. Chem. 556, 137 (2003)

    Article  Google Scholar 

  19. Q. Zhou, H. Ge, G. Wei, Q. Wu, J.U. Scie, Tech. Beijin 15, 611 (2008)

    Article  CAS  Google Scholar 

  20. S. Swathirajan, J. Electrochem. Soc. 133, 671 (1986)

    Article  CAS  Google Scholar 

  21. E.J. Podlaha, D. Landolt, J. Electrochem. Soc. 143, 893 (1996)

    Article  CAS  Google Scholar 

  22. E.J. Podlaha, D. Landolt, J. Electrochem. Soc. 144, 1672 (1997)

    Article  CAS  Google Scholar 

  23. J. Crousier, M. Eyraud, J.P. Crousier, J.M. Roman, J. Appl. Electrochem. 22, 749 (1992)

    Article  CAS  Google Scholar 

  24. E. Chassaing, M.P. Roumegas, M.F. Trichet, J. Appl. Electrochem. 25, 667 (1995)

    Article  CAS  Google Scholar 

  25. A. Subramania, A.R. Sathiya Priya, V.S. Muralidharan, Int. J. Hydrogen Energy 32, 2843 (2007)

    Article  CAS  Google Scholar 

  26. B.R. Scharifker, G.J. Hills, Electrochim. Acta 28, 497 (1983)

    Article  Google Scholar 

  27. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem. 130, 99 (1981)

    Article  CAS  Google Scholar 

  28. E. Goméz, E. Pellicer, X. Alcobé, E. Vallés, J. Solid. State. Electrochem 8, 853 (2004)

    Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffraction, Vol. 91, 2nd edn. (Addison-Wesley, Reading, MA, 1978), p. 501

    Google Scholar 

  30. S. Guessasma, N. Fenineche, J. Magn. Magn. Mater. 320, 450 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are very grateful to Pr. Bouzid Messoudi, Faculté de Technologie, Université de Béjaïa, Algeria, for providing DRX and SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messaoudi, Y., Fenineche, N., Guittoum, A. et al. A study on electrodeposited Co–Mo alloys thin films. J Mater Sci: Mater Electron 24, 2962–2969 (2013). https://doi.org/10.1007/s10854-013-1198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1198-y

Keywords

Navigation