Skip to main content
Log in

Electrodeposition of Cu–Sn alloys: theoretical and experimental approaches

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Cu–Sn alloy was electrodeposited from aqueous electrolytic bath onto Mo electrode. Before electrodeposition, some calculations using MATLAB software to obtain the dominant complex of Cu–citrate in different pH values and cyclic voltammetry (CV) experiments was performed. The potential range in which the alloy electrodeposition process could be carried out in a solution containing CuSO4, SnSO4, and Na3C6H5O7 was determined by CV. In addition, the effects of boric acid and cetyl trimethyl ammonium bromide (CTAB) surfactant on codeposition potential were studied. The microstructural properties and alloy composition were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. Alloy composition up to 49.5 at.% of Sn was obtained. Alloy composition of 33 at.% Sn corresponding to Cu2SnS3 was obtained at solution containing 0.04 M SnSO4, 0.02 M CuSO4 and 0.4 M Na3C6H5O7 at Potential −0.75 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Choi, Mater. Sci. Eng. A 550, 183 (2012)

    Article  Google Scholar 

  2. P. De Vreese, A. Skoczylas, E. Matthijs, J. Fransaer, K. Binnemans, Electrochim. Acta 108, 788 (2013)

    Article  Google Scholar 

  3. J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Mater. Sci. Eng. C 35, 392 (2014)

    Article  Google Scholar 

  4. M.R. Khelladi, L. Mentar, A. Azizi, L. Makhloufi, G. Schmerber, A. Dinia, J. Mater. Sci. Mater. Electron. 23, 2245 (2012)

    Article  Google Scholar 

  5. U. Sarac, R.M. Öksüzoğlu, M.C. Baykul, J. Mater. Sci. Mater. Electron. 23, 2110 (2012)

    Article  Google Scholar 

  6. I. Marković, S. Nestorović, D. Marković, Mater. Des. 53, 137 (2014)

    Article  Google Scholar 

  7. R. Lei, S. Xu, M. Wang, H. Wang, Mater. Sci. Eng. A 586, 367 (2013)

    Article  Google Scholar 

  8. B. Zhao, Y. Zhang, J. Yang, J. Mater. Sci. Mater. Electron. 24, 4439 (2013)

    Article  Google Scholar 

  9. Y. Sürme, A.A. Gürten, E. Bayol, E. Ersoy, J. Alloy. Compd. 485, 98 (2009)

    Article  Google Scholar 

  10. I. Volov, X. Sun, G. Gadikota, P. Shi, A.C. West, Electrochim. Acta 89, 792 (2013)

    Article  Google Scholar 

  11. D. Padhi, S. Gandikota, H.B. Nguyen, C. McGuirk, S. Ramanathan, J. Yahalom, G. Dixit, Electrochim. Acta 48, 935 (2003)

    Article  Google Scholar 

  12. A. Survila, Z. Mockus, R. Juškėnas, V. Jasulaitienė, J. Appl. Electrochem. 31, 1109 (2001)

    Article  Google Scholar 

  13. K. Junpei, C. Kotaro, A. Naoya, A. Hideaki, N. Ryota, J. Kazuo, K. Hironori, Jpn. J. Appl. Phys. 51, 10NC34 (2012)

    Article  Google Scholar 

  14. P.A. Fernandes, P.M.P. Salomé, A.F.D. Cunha, J. Phys. D Appl. Phys. 43, 215403 (2010)

    Article  Google Scholar 

  15. D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin Solid Films 520, 6291 (2012)

    Article  Google Scholar 

  16. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Phys. Status Solidi. C 10, 1086 (2013)

    Article  Google Scholar 

  17. C. Han, Q. Liu, D.G. Ivey, Electrochim. Acta 54, 3419 (2009)

    Article  Google Scholar 

  18. W. Tang, Y. Hu, S. Huang, Met. Mater. Int. 18, 177 (2012)

    Article  Google Scholar 

  19. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, M. Arı, J. Mater. Sci. Mater. Electron. 21, 468 (2010)

    Article  Google Scholar 

  20. D.H. Nam, R.H. Kim, D.W. Han, H.S. Kwon, Electrochim. Acta 66, 126 (2012)

    Article  Google Scholar 

  21. X.H. Weihua Pu, Jianguo Ren, Chunrong Wan, Changyin Jiang, in: 6th Advanced Batteries and Accumulators (ABA), 2005

  22. J.-Y.E. Jung-Won Park, H.-S. Kwon, Int. J. Electrochem. Sci. 6, 3093 (2011)

    Google Scholar 

  23. S.D. Beattie, J.R. Dahn, J. Electrochem. Soc. 150, C457 (2003)

    Article  Google Scholar 

  24. K.I. Murase, S. Akira, I. Takashi, S. Hiroyuki, J. Electrochem. Soc. 158, 335 (2011)

    Article  Google Scholar 

  25. A. Mehdi, M.M. Bagheri, E. Hosein, Phys. Scr. 85, 035603 (2012)

    Article  Google Scholar 

  26. Y.-T. Hsieh, C.-C. Tai, I.-W. Sun, Meet. Abstr. 53, MA2010 (2010)

    Google Scholar 

  27. C.T.J. Low, F.C. Walsh, J. Electroanal. Chem. 615, 91 (2008)

    Article  Google Scholar 

  28. Y. Goh, A.S.M.A. Haseeb, M.F.M. Sabri, Electrochim. Acta 90, 265 (2013)

    Article  Google Scholar 

  29. A.N. Correia, M.X. Façanha, P. de Lima-Neto, Surf. Coat. Technol. 201, 7216 (2007)

    Article  Google Scholar 

  30. N. Pewnim, S. Roy, Electrochim. Acta 90, 498 (2013)

    Article  Google Scholar 

  31. G.A. Finazzi, E.M. de Oliveira, I.A. Carlos, Surf. Coat. Technol. 187, 377 (2004)

    Article  Google Scholar 

  32. Q.L. Chunfen Han, Douglas G. Ivey, in: CS MANTECH Conference, Austin, Texas, USA, 2007

  33. A. He, Q. Liu, D. Ivey, J. Mater. Sci. Mater. Electron. 19, 553 (2008)

    Article  Google Scholar 

  34. F.I.L. Tzec, G. Oskam, ECS Trans. 25, 195 (2010)

    Article  Google Scholar 

  35. R.Y. Ying, P.K. Ng, Z. Mao, R.E. White, J. Electrochem. Soc. 135, 2964 (1988)

    Article  Google Scholar 

  36. C. Han, Q. Liu, D.G. Ivey, Electrochim. Acta 53, 8332 (2008)

    Article  Google Scholar 

  37. D. Sinkeviciute, J. Baltrusaitis, N. Dukstiene, J. Sol. State Electrochem. 15, 711 (2011)

    Article  Google Scholar 

  38. E. Gómez, E. Pellicer, E. Vallés, J. Electroanal. Chem. 580, 222 (2005)

    Article  Google Scholar 

  39. Z. Zheng-zhong, Z. Xiao-rong, Z. Chao, Wuhan Univ. J. Nat. Sci. 4, 211 (1999)

    Article  Google Scholar 

  40. M. Rezaei, M. Ghorbani, A. Dolati, Electrochim. Acta 56, 483 (2010)

    Article  Google Scholar 

  41. N. Zech, D. Landolt, Electrochim. Acta 45, 3461 (2000)

    Article  Google Scholar 

  42. M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, 2nd edn. (Wiley, London, 2006)

    Book  Google Scholar 

  43. Y.D. Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition (Springer, New York, 2011)

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Amirkabir University of Technology and Esfarayen University of Technology for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mousavi Khoie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, G., Mousavi Khoie, S.M., Abrishami, M.E. et al. Electrodeposition of Cu–Sn alloys: theoretical and experimental approaches. J Mater Sci: Mater Electron 26, 1969–1976 (2015). https://doi.org/10.1007/s10854-014-2636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2636-1

Keywords

Navigation