Skip to main content
Log in

Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A cold-rolled Cu/Al clad ribbon was bonded on an electroless nickel immersion gold (ENIG)-finished Cu substrate by ultrasonic bonding. The bonding samples were subjected to harsh conditions such as thermal exposure at 200 °C and thermal shock at −40/250 °C. The microstructural evolution and textural transitions in the Cu/Al clad ribbons were analyzed using electron backscatter diffraction to understand the heel crack propagation mechanism. The heel cracks were initiated at the edge of the Al layer between the bonded and non-bonded zones and were propagated along the coarsened grain boundaries deep into the cladded Cu layer. The continuous dynamic recrystallization (CDRX) transition phenomena around the heel cracks were scrutinized by electron backscatter pattern analysis to reveal the different microstructural and textural evolutions as a function of the ultrasonic bonding process at the bonded part and of lift-up at the non-bonded part. The heel cracks were occurred by grain coarsening due to CDRX within the Al layer during the environmental tests. The region of coarsened grains by CDRX was extended with increasing test periods. Especially in the thermal shock tests at −40/250 °C, severe grain coarsening was found involving significant transformation of sub-grains into grains by rapid CDRX development. Thus, heel crack propagation accelerated more during thermal shock cycles than during high-temperature storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Celnikier, L. Benabou, L. Dupont, G. Coquery, Microelectron. Reliab. 51, 965 (2011)

    Article  Google Scholar 

  2. M. Li, H. Ji, C. Wang, H.S. Bang, H.S. Bang, Ultrason. 45, 61 (2006)

    Article  Google Scholar 

  3. X. Liu, G.Q. Lu, Int. J. Microcircuits Electron. Packag. 23(4), 407 (2000)

    Google Scholar 

  4. M. Ciappa, Microelectron. Reliab. 42, 653 (2002)

    Article  Google Scholar 

  5. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, K. Ishida, Microelectron. Reliab. 47, 2147 (2007)

    Article  Google Scholar 

  6. V.K. Astashev, V.I. Babitsky, Ultrason. 36, 89 (1998)

    Article  Google Scholar 

  7. I.E. Gunduz, T. Ando, E. Shattuck, P.Y. Wong, C.C. Doumanidis, Scripta Mater. 52, 939 (2005)

    Article  Google Scholar 

  8. H. Medjahed, P.E. Vidal, B. Nogarede, Microelectron. Reliab. 52, 1099 (2012)

    Article  Google Scholar 

  9. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd edn. (Elsevier, Kidlington, 2004)

    Google Scholar 

  10. S. Gourdet, F. Montheillet, Mater. Sci. Eng., A 283, 274 (2000)

    Article  Google Scholar 

  11. H.J. Mcqueen, Mater. Sci. Eng., A 387–389, 203 (2004)

    Article  Google Scholar 

  12. H. Yamagata, Scripta Metall. Mater. 27, 201 (1992)

    Article  Google Scholar 

  13. H. Yamagata, Acta Metall. Mater. 43(2), 723 (1995)

    Article  Google Scholar 

  14. M. Kuroda, AIP Conf. Proc. 778, 445 (2005)

    Article  Google Scholar 

  15. S.H. Choi, J.H. Cho, K.H. Oh, K. Chung, F. Barlat, Int. J. Mech. Sci. 42, 1571 (2000)

    Article  Google Scholar 

  16. J. Hirsch, K. Lucke, Acta Metall. 36(11), 2863 (1988)

    Article  Google Scholar 

  17. F.J. Humphreys, J. Mater. Sci. 36, 3833 (2001)

    Article  Google Scholar 

  18. K.P. Mingard, B. Roebuck, E.G. Bennett, M.G. Gee, H. Nordenstrom, G. Sweetman, P. Chan, Int. J. Ref. Met. H. 27, 213 (2009)

    Article  Google Scholar 

  19. K.P. Mingard, B. Roebuck, E.G. Bennett, M. Thomas, B.P. Wynne, E.J. Palmiere, J. Microsc. 227, 298 (2007)

    Article  Google Scholar 

  20. J. Wheeler, D.J. Prior, Z. Jiang, R. Spiess, P.W. Trimby, Contrib. Mineral Petrol. 141, 109 (2001)

    Article  Google Scholar 

  21. K. Kunze, S.I. Wright, B.L. Adams, D.J. Dingley, Text. Microstruct. 20, 41 (1993)

    Article  Google Scholar 

  22. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316 (2011)

    Article  Google Scholar 

  23. M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, A.D. Rollett, Acta Mater. 56, 3098 (2008)

    Article  Google Scholar 

  24. S. Zaefferer, P. Romano, F. Friedel, J. Microsc. 230, 499 (2008)

    Article  Google Scholar 

  25. L. Bracke, K. Verbeken, L. Kestens, J. Penning, Acta Mater. 57, 1512 (2009)

    Article  Google Scholar 

  26. E.J. Chun, H. Do, S. Kim, D.G. Nam, Y.H. Park, N. Kang, Mater. Chem. Phys. 140, 307 (2013)

    Article  Google Scholar 

  27. K.W. Neale, L.S. Toth, J.J. Jonas, Int. J. Plast 6, 45 (1990)

    Article  Google Scholar 

  28. L.S. Toth, J.J. Jonas, P. Gilormini, B. Bacroix, Int. J. Plast 6, 83 (1990)

    Article  Google Scholar 

  29. R. Becker, J.F. Butler, J.H. Hu, L.A. Lalli, Metall. Trans. A 22(1), 45 (1991)

    Google Scholar 

  30. S.H. Choi, J.H. Cho, F. Barlat, K. Chung, J.W. Kwon, K.H. Oh, Metall. Mater. Trans. A 30, 377 (1999)

    Article  Google Scholar 

  31. J. Hirsch, K. Lucke, Acta Metall. 36(11), 2883 (1988)

    Article  Google Scholar 

  32. Y. Zhou, L.S. Toth, K.W. Neale, Acta Metall. Mater. 40(11), 3179 (1992)

    Article  Google Scholar 

  33. C.H. Choi, J.W. Kwon, K.H. Oh, D.N. Lee, Acta Mater. 45(12), 5119 (1997)

    Article  Google Scholar 

  34. J.R. Hirsch, T.J. Rickert, Mater. Sci. Forum 157–162, 1979 (1994)

    Article  Google Scholar 

  35. Y. Zhou, J.J. Jonas, K.W. Neale, Acta Mater. 44(2), 607 (1996)

    Article  Google Scholar 

  36. H. Yamagata, Y. Ohuchida, N. Saito, M. Otsuka, Scripta Mater. 45, 1055 (2011)

    Article  Google Scholar 

  37. F. Montheillet, J. LeCoze, J. Phys. Stat. Sol. (a) 189(1), 51 (2002)

    Article  Google Scholar 

  38. D. Ponge, M. Bredehoft, G. Gottstein, Scripta Mater. 37(11), 1769 (1997)

    Article  Google Scholar 

  39. S. Gourdet, F. Montheillet, Acta Mater. 51, 2685 (2003)

    Article  Google Scholar 

  40. E. Mariani, J. Mecklenburgh, J. Wheeler, J.D. Prior, F. Heidelbach, Acta Mater. 57, 1886 (2009)

    Article  Google Scholar 

  41. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng., A 238, 219 (1997)

    Article  Google Scholar 

  42. P.J. Hurley, F.J. Humphreys, Acta Mater. 51, 1087 (2003)

    Article  Google Scholar 

  43. R. Jamaati, M.R. Toroghinejad, M. Hoseini, J.A. Szpunar, Mater. Sci. Technol. 28(4), 406 (2012)

    Article  Google Scholar 

  44. L. Su, C. Lu, A.A. Gazder, A.A. Saleh, G. Deng, K. Tieu, H. Li, J. Alloys Compd. 594, 12 (2014)

    Article  Google Scholar 

  45. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater. 39(9), 1221 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was partially supported by a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science Grant Number 24226017. The authors thank Mr. Osami Iizuka at Technoalpha Co., Ltd. for his assistance with the ribbon bonding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Nagao, S., Sugahara, T. et al. Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment. J Mater Sci: Mater Electron 26, 7277–7289 (2015). https://doi.org/10.1007/s10854-015-3355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3355-y

Keywords

Navigation