Skip to main content
Log in

Prediction of yield surfaces of textured sheet metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To predict the yield surfaces of textured sheet metals, two methods were conducted. The first method (crystallographic yield surface) is based on the Taylor-Bishop-Hill (TBH) polycrystal model, using the orientation distribution function (ODF) of the material as an input. The second method (phenomenological yield surface) makes use of phenomenological yield functions based on mechanical test data. Anisotropic properties for six texture components typical of aluminum alloy sheets were examined and the results based on crystal plasticity were compared with the results based on phenomenological yield functions. The experimental anisotropy measurements obtained for an AA6xxx sheet were also compared to crystallographic and phenomenological predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Baudoin, J.D. Bryant, P.R. Dawson, and D.P. Mika: Numisheet ’96, J.K. Lee, G.K. Kinzel, and R.H. Wagoner, eds., The Ohio State University, Columbus, OH, 1996, pp. 17–24.

    Google Scholar 

  2. R. Hill: The Mathematical Theory of Plasticity, Oxford University Press, Oxford, United Kingdom, 1950, p. 318.

    Google Scholar 

  3. P.B. Mellor and A. Parmar: in Plasticity of Sheet Metal Forming, Mechanics of Sheet Metal Forming, D.P. Koistinen and N.M. Wang, eds., Plenum Press, New York, NY, 1978, pp. 53–74.

    Google Scholar 

  4. R. Hill: J. Mech. Phys. Solids, 1990, vol. 38, pp. 405–17.

    Article  Google Scholar 

  5. R. Hill: Int. J. Mech. Sci., 1993, vol. 35, pp. 19–25.

    Article  Google Scholar 

  6. W.F. Hosford: J. Appl. Mech. Trans. ASME, 1972, vol. 39, pp. 607–09.

    Google Scholar 

  7. F. Barlat and J. Lian: Int. J. Plasticity, 1989, vol. 5, pp. 51–66.

    Article  Google Scholar 

  8. F. Barlat, D.J. Lege, and J.C. Brem: Int. J. Plasticity, 1991, vol. 7, pp. 693–712.

    Article  CAS  Google Scholar 

  9. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, and S. Makosey: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1727–63.

    Article  CAS  Google Scholar 

  10. G.I. Taylor: J. Inst. Met., 1938, vol. 63, pp. 307–24.

    Google Scholar 

  11. J.F.W. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  12. J.F.W. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 1298–1307.

    CAS  Google Scholar 

  13. S. Matthies and G.W. Vinel: Phys. Status Solidi, 1982, vol. 112, pp. 111–14.

    Google Scholar 

  14. S. Matthies: Proc. 8th ICOTOM, Santa Fe, NM, 1987, J.S. Kallend and G. Gottstein, eds, Metallurgical Society of AIME, Warrendale, PA, pp. 37–48.

    Google Scholar 

  15. T. Kuwabara, I. Susuki, and S. Ikeda: Proc. Plasticity ’97, 6th Int. Symp. on Plasticity and Its Current Applications, A.S. Khan, ed., Neat Press, Fulton, MD, 1997, pp. 53–54.

    Google Scholar 

  16. C.-H. Choi, J.-W. Kwon, K.H. Oh, and D.N. Lee: Acta Metall., 1997, vol. 45, pp. 5119–5128.

    CAS  Google Scholar 

  17. S.-H. Choi, J.-W. Kwon, and K.H. Oh: Met. Mater., 1996, vol. 2(3) pp. 113–40.

    Google Scholar 

  18. S. Matthies: Phys. Status Solid: 1980, vol. 101, pp. 111–15.

    Google Scholar 

  19. S. Matthies and F. Wagner: Phys. Status Solidi, 1981, vol. 107, pp. 591–601.

    Google Scholar 

  20. S. Matthies, J. Muller, and G.W. Vinel: Textures Microstr., 1988, vol. 10, pp. 77–96.

    Article  Google Scholar 

  21. H.J. Bunge: Texture Analysis in Material Science, Butterworths and Co., London, 1982.

    Google Scholar 

  22. Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, and J.J. Jonas: Acta Metall., 1987, vol. 35, pp. 439–51.

    Article  CAS  Google Scholar 

  23. F. Barlat and O. Richmond: Mater. Sci. Eng., 1987, vol. 95, pp. 15–29.

    Article  Google Scholar 

  24. S.-H. Choi, K.-H. Kim, K.H. Oh, and D.N. Lee: Mater. Sci. Eng., 1996, vol. A222, pp. 158–165.

    Google Scholar 

  25. A.P. Karafillis and M.C. Boyce: J. Mech. Phys. Solids, 1993, vol. 41 (12), pp. 1859–86.

    Article  CAS  Google Scholar 

  26. T. Furu and H.E. Vatne: Mater. Sci. Forum, 1998, vols. 273–275, pp. 403–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H., Cho, J.H., Oh, K.H. et al. Prediction of yield surfaces of textured sheet metals. Metall Mater Trans A 30, 377–386 (1999). https://doi.org/10.1007/s11661-999-0327-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0327-y

Keywords

Navigation