Skip to main content
Log in

Synthesis and characterisation of carbon nanotubes and zinc oxide composites: sub-millisecond UV response

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, various morphological configurations of zinc oxide (ZnO) were fabricated onto the carbon nanotube (CNT) network by influencing the pH levels of the growth solution (specifically, pH values of 5, 7, and 9). The CNT network was fabricated using the thermal chemical vapour deposition method, while the ZnO nanostructure was synthesised using the chemical bath deposition technique. The growth of the multi-walled CNT network was confirmed by utilising field emission gun transmission electron microscopy and Raman spectroscopy. On the other hand, the investigation of the distinct morphology of pH-dependent ZnO on the CNT network was confirmed by employing field emission scanning electron microscopy. Three specific types of UV photo-sensing devices were manufactured utilising the synthesised samples, and a comprehensive investigation was conducted to analyse their UV-responsive characteristics. The analysis of the UV-responsive behaviour involved subjecting the devices to an array of UV LEDs. The intensity of the 365 nm UV LED array varied between 18.7 and 95.22 μW/cm2. For a device fabricated with ZnO grown at pH 5, the maximum photocurrent was recorded to be 40.7 ± 0.26 μA, and the external quantum efficiency was 5359 ± 73%. The device also showed remarkable responsivity to UV radiation with a pulsing frequency of 500 Hz. Exceptional response time and recovery time of 316 μs and 364 μs have been measured for the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. Chen C-L, Kim K, Truong Q, Shen A, Li Z, Chen Y (2012) A spiking neuron circuit based on a carbon nanotube transistor. Nanotechnology 23:275202. https://doi.org/10.1088/0957-4484/23/27/275202

    Article  CAS  Google Scholar 

  3. Tran T-T, Mulchandani A (2016) Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Anal Chem 79:222–232. https://doi.org/10.1016/j.trac.2015.12.002

    Article  CAS  Google Scholar 

  4. Yao X, Zhang Y, Jin W, Hu Y, Cui Y (2021) Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 21:995. https://doi.org/10.3390/s21030995

    Article  CAS  Google Scholar 

  5. Kazmierski TJ, Zhou D, Al-Hashimi BM, Ashburn P (2010) Numerically efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation. IEEE Trans Nanotechnol 9:99–107. https://doi.org/10.1109/TNANO.2009.2017019

    Article  Google Scholar 

  6. Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M, Radosavljevic M (2005) Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans Nanotechnol 4:153–158. https://doi.org/10.1109/TNANO.2004.842073

    Article  Google Scholar 

  7. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455. https://doi.org/10.1016/j.carbon.2009.09.060

    Article  CAS  Google Scholar 

  8. Pukazhselvan D, Gupta BK, Srivastava A, Srivastava ON (2005) Investigations on hydrogen storage behavior of CNT doped NaAlH4. J Alloy Compd 403:312–317. https://doi.org/10.1016/j.jallcom.2005.05.008

    Article  CAS  Google Scholar 

  9. Shunin Y, Zhukovskii Y, Burlutskaya N, Bellucci S (2011) Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates. Open Phys 9:519–529. https://doi.org/10.2478/s11534-010-0086-9

    Article  CAS  Google Scholar 

  10. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett 10:346. https://doi.org/10.1186/s11671-015-1034-9

    Article  CAS  Google Scholar 

  11. Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030. https://doi.org/10.1021/am300835p

    Article  CAS  Google Scholar 

  12. Kou L, Guo W, Li C (2008) Piezoelectricity of ZnO and its nanostructures. In: 2008 Symposium on piezoelectricity, acoustic waves, and device applications, IEEE, Nanjing, China, 2008, pp 354–359. https://doi.org/10.1109/SPAWDA.2008.4775808

  13. Kamaruzaman D, Ahmad N, Rosly MA, Mamat MH (2021) Piezoelectric energy harvesting based on ZnO: a review. In: AIP conference proceedings, Arau, Malaysia, p 120002. https://doi.org/10.1063/5.0044476

  14. Bhatia D, Sharma H, Meena RS, Palkar VR (2016) A novel ZnO piezoelectric microcantilever energy scavenger: fabrication and characterization, sensing and bio-sensing. Research 9:45–52. https://doi.org/10.1016/j.sbsr.2016.05.008

    Article  Google Scholar 

  15. Carcia PF, McLean RS, Reilly MH, Nunes G (2003) Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett 82:1117–1119. https://doi.org/10.1063/1.1553997

    Article  CAS  Google Scholar 

  16. Fortunato EMC, Barquinha PMC, Pimentel ACMBG, Gonçalves AMF, Marques AJS, Pereira LMN, Martins RFP (2005) Martins, fully transparent ZnO thin-film transistor produced at room temperature. Adv Mater 17:590–594. https://doi.org/10.1002/adma.200400368

    Article  CAS  Google Scholar 

  17. Olumurewa KO, Eleruja MA (2023) Photoelectrical and thermal sensing measurement of spin coated ZnO and ZnO–RGO thin film. Physica B 650:414588. https://doi.org/10.1016/j.physb.2022.414588

    Article  CAS  Google Scholar 

  18. Chakraborty M, Kadir ES, Gayen RN (2023) Enhanced UV photo-detection properties of graphene oxide incorporated transparent TiO2 thin films in Schottky configuration. Ceram Int 49:20651–20661. https://doi.org/10.1016/j.ceramint.2023.03.196

    Article  CAS  Google Scholar 

  19. Majumder R, Kundu S, Chowdhury MP (2023) Investigation of ambient regulated enhanced photo-responsive properties of GO–ZnO and transition metal doped GO–ZnO nanocomposite: improved photocurrent and swift response. Opt Mater 142:113981. https://doi.org/10.1016/j.optmat.2023.113981

    Article  CAS  Google Scholar 

  20. Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% Efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118:16567–16573. https://doi.org/10.1021/jp412407j

    Article  CAS  Google Scholar 

  21. Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861. https://doi.org/10.1039/c1ee01873f

    Article  CAS  Google Scholar 

  22. Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett 11:666–671. https://doi.org/10.1021/nl1037962

    Article  CAS  Google Scholar 

  23. Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuators A 267:242–261. https://doi.org/10.1016/j.sna.2017.10.021

    Article  CAS  Google Scholar 

  24. Xu J, Pan Q, Shun Y, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B Chem 66:277–279. https://doi.org/10.1016/S0925-4005(00)00381-6

    Article  CAS  Google Scholar 

  25. Suchea M, Christoulakis S, Moschovis K, Katsarakis N, Kiriakidis G (2006) ZnO transparent thin films for gas sensor applications. Thin Solid Films 515:551–554. https://doi.org/10.1016/j.tsf.2005.12.295

    Article  CAS  Google Scholar 

  26. Hullavarad S, Hullavarad N, Look D, Claflin B (2009) Persistent Photoconductivity studies in nanostructured ZnO UV sensors. Nanoscale Res Lett 4:1421–1427. https://doi.org/10.1007/s11671-009-9414-7

    Article  CAS  Google Scholar 

  27. Gimenez AJ, Yáñez-Limón JM, Seminario JM (2011) ZnO-paper based photoconductive UV sensor. J Phys Chem C 115:282–287. https://doi.org/10.1021/jp107812w

    Article  CAS  Google Scholar 

  28. Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra YK, Adelung R (2014) Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv Mater 26:1541–1550. https://doi.org/10.1002/adma.201304363

    Article  CAS  Google Scholar 

  29. Makris TD, Giorgi L, Giorgi R, Lisi N, Salernitano E (2005) CNT growth on alumina supported nickel catalyst by thermal CVD. Diam Relat Mater 14:815–819. https://doi.org/10.1016/j.diamond.2004.11.001

    Article  CAS  Google Scholar 

  30. Brukh R, Mitra S (2006) Mechanism of carbon nanotube growth by CVD. Chem Phys Lett 424:126–132. https://doi.org/10.1016/j.cplett.2006.04.028

    Article  CAS  Google Scholar 

  31. Chiang M-R, Liu K-S, Lai T-S, Tsai C-H, Cheng H-F, Lin I-N (2001) Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. J Vac Sci Technol B 19:1034–1039. https://doi.org/10.1116/1.1349204

    Article  CAS  Google Scholar 

  32. Ismail RA, Mohsin MH, Ali AK, Hassoon KI, Erten-Ela S (2020) Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E 119:113997. https://doi.org/10.1016/j.physe.2020.113997

    Article  CAS  Google Scholar 

  33. Yang J, Yang Z, Li LH, Cai Q, Nie H, Ge M, Chen X, Chen Y, Huang S (2017) Highly efficient oxygen evolution from CoS2/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale 9:6886–6894. https://doi.org/10.1039/C7NR01293D

    Article  CAS  Google Scholar 

  34. Luo X-L, Xu J-J, Wang J-L, Chen H-Y (2005) Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun 16:2169–2171. https://doi.org/10.1039/b419197h

    Article  CAS  Google Scholar 

  35. Basit M, Abbas M, Ahmad N, Javed S, Shah NA (2022) Synthesis of ZnO/CNT nanocomposites for ultraviolet sensors. Front Mater. https://doi.org/10.3389/fmats.2022.835521

    Article  Google Scholar 

  36. Li M-H, Lu L-S, Lee C-H, Tsai D-Y, Jhang J-J, Wang D-Y, Lin Y-S, Li Y-H, Chen H (2022) Material characterizations and light/gas dual-sensing properties of ZnO nanorods incorporating buried carbon nanotube in the seed layer. Results Phys 39:105783. https://doi.org/10.1016/j.rinp.2022.105783

    Article  Google Scholar 

  37. Sheoran M, Sharma R, Chaudhary S, Dawar A, Ojha S, Srivastava A, Prakash Sinha O (2023) Cost-effective preparation of ZnO–CNT nanocomposite-based electrode for supercapacitor application. Mater Today Proc 89:65–70. https://doi.org/10.1016/j.matpr.2023.05.703

    Article  CAS  Google Scholar 

  38. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99. https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  39. Qi H, Liu J, Mäder E (2014) Smart cellulose fibers coated with carbon nanotube networks. Fibers 2:295–307. https://doi.org/10.3390/fib2040295

    Article  Google Scholar 

  40. Majumder R, Kundu S, Ghosh R, Pradhan M, Ghosh D, Roy S, Roy S, Pal Chowdhury M (2020) Expeditious UV detection of tungstite (WO3·H2O) and tungsten oxide (WO3) decorated multiwall carbon nanotubes (MWCNT) based photodetector: ultrafast response and recovery time. SN Appl Sci 2:81. https://doi.org/10.1007/s42452-019-1799-z

    Article  CAS  Google Scholar 

  41. Ghosh R, Kundu S, Majumder R, Roy S, Das S, Banerjee A, Guria U, Banerjee M, Bera MK, Subhedar KM, Chowdhury MP (2019) One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl Nanosci 9:1939–1952. https://doi.org/10.1007/s13204-019-00985-8

    Article  CAS  Google Scholar 

  42. Demianets LN, Kostomarov DV, Kuz’mina IP, Pushko SV (2002) Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr Rep 47:S86–S98. https://doi.org/10.1134/1.1529962

    Article  CAS  Google Scholar 

  43. Yin Y, Sun Y, Yu M, Liu X, Yang B, Liu D, Liu S, Cao W, Ashfold MNR (2014) Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer. RSC Adv 4:44452–44456. https://doi.org/10.1039/C4RA05008H

    Article  CAS  Google Scholar 

  44. Zhai T, Xie S, Zhao Y, Sun X, Lu X, Yu M, Xu M, Xiao F, Tong Y (2012) Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm 14:1850–1855. https://doi.org/10.1039/c1ce06013a

    Article  CAS  Google Scholar 

  45. Sankara Reddy B, Venkatramana Reddy S, Koteeswara Reddy N (2013) Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles. J Mater Sci Mater Electron 24:5204–5210. https://doi.org/10.1007/s10854-013-1545-z

    Article  CAS  Google Scholar 

  46. Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7:7415–7429. https://doi.org/10.1039/C4NR06913G

    Article  CAS  Google Scholar 

  47. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6. https://doi.org/10.5402/2012/372505

    Article  CAS  Google Scholar 

  48. Majumder R, Kundu S, Ghosh R, Roy S, Guria U, Chowdhury MP (2019) Self-doped SnO2: F synthesis by aerosol-spray deposition technique and their application in relative humidity sensor devices. Appl Nanosci 9:1553–1563. https://doi.org/10.1007/s13204-019-01047-9

    Article  CAS  Google Scholar 

  49. Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloy Compd 499:231–237. https://doi.org/10.1016/j.jallcom.2010.03.174

    Article  CAS  Google Scholar 

  50. Ribut SH, Che Abdullah CA, Mustafa M, Mohd Yusoff MZ, Ahmad Azman SN (2018) Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity. Mater Res Express 6:025016. https://doi.org/10.1088/2053-1591/aaecbc

    Article  CAS  Google Scholar 

  51. Omri K, Najeh I, Dhahri R, El GhoulEl Mir JL (2014) Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron Eng 128:53–58. https://doi.org/10.1016/j.mee.2014.05.029

    Article  CAS  Google Scholar 

  52. Tak M, Gupta V, Tomar M (2015) A highly efficient urea detection using flower-like zinc oxide nanostructures. Mater Sci Eng C 57:38–48. https://doi.org/10.1016/j.msec.2015.06.052

    Article  CAS  Google Scholar 

  53. Jay Chithra M, Sathya M, Pushpanathan K (2015) Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall Sin (Engl Lett) 28:394–404. https://doi.org/10.1007/s40195-015-0218-8

    Article  CAS  Google Scholar 

  54. Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182. https://doi.org/10.1016/j.matlet.2013.09.020

    Article  CAS  Google Scholar 

  55. Köck E-M, Kogler M, Bielz T, Klötzer B, Penner S (2013) In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J Phys Chem C 117:17666–17673. https://doi.org/10.1021/jp405625x

    Article  CAS  Google Scholar 

  56. Kane AO, Ngom BD, Sakho O (2021) Influence of Adansonia digitata leaves dye extraction solvent nature on the structural and physical properties of biosynthesized ZnO nanoparticles. Mater Today Proc 36:290–297. https://doi.org/10.1016/j.matpr.2020.04.048

    Article  CAS  Google Scholar 

  57. Li XL, Li C, Zhang Y, Chu DP, Milne WI, Fan HJ (2010) Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT–ZnO heterostructures. Nanoscale Res Lett 5:1836–1840. https://doi.org/10.1007/s11671-010-9721-z

    Article  CAS  Google Scholar 

  58. Wang RP, Xu G, Jin P (2004) Size dependence of electron–phonon coupling in ZnO nanowires. Phys Rev B 69:113303. https://doi.org/10.1103/PhysRevB.69.113303

    Article  CAS  Google Scholar 

  59. Lee W-J, Chang Y-H (2018) Growth without postannealing of monoclinic VO2 thin film by atomic layer deposition using VCl4 as precursor. Coatings 8:431. https://doi.org/10.3390/coatings8120431

    Article  CAS  Google Scholar 

  60. Kind H, Yan H, Messer B, Law M, Yang P (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160. https://doi.org/10.1002/1521-4095(20020116)14:2%3c158::AID-ADMA158%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  61. Yang Q, Guo X, Wang W, Zhang Y, Xu S, Lien DH, Wang ZL (2010) Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4:6285–6291. https://doi.org/10.1021/nn1022878

    Article  CAS  Google Scholar 

  62. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009. https://doi.org/10.1021/nl070111x

    Article  CAS  Google Scholar 

  63. Liu X, Gu L, Zhang Q, Wu J, Long Y, Fan Z (2014) All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5:4007. https://doi.org/10.1038/ncomms5007

    Article  CAS  Google Scholar 

  64. Humayun Q, Kashif M, Hashim U, Qurashi A (2014) Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors. Nanoscale Res Lett 9:29. https://doi.org/10.1186/1556-276X-9-29

    Article  CAS  Google Scholar 

  65. Postica V, Paulowicz I, Lupan O, Schütt F, Wolff N, Cojocaru A, Mishra YK, Kienle L, Adelung R (2019) The effect of morphology and functionalization on UV detection properties of ZnO networked tetrapods and single nanowires. Vacuum 166:393–398. https://doi.org/10.1016/j.vacuum.2018.11.046

    Article  CAS  Google Scholar 

  66. Ye X, Liu H, Hu N, Wang J, Li M, Zhang Y (2015) A novel photoconductive UV detector based on ZnO/RGO composite with enhanced photoresponse performance. Mater Lett 150:126–129. https://doi.org/10.1016/j.matlet.2015.02.121

    Article  CAS  Google Scholar 

  67. Bai S, Wu W, Qin Y, Cui N, Bayerl DJ, Wang X (2011) High-Performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv Funct Mater 21:4464–4469. https://doi.org/10.1002/adfm.201101319

    Article  CAS  Google Scholar 

  68. Ghosh R, Majumder R, Kundu S, Pradhan M, Roy S, Gayen R, Pal Chowdhury M (2021) Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study. J Mater Sci 56:19128–19143. https://doi.org/10.1007/s10853-021-06459-z

    Article  CAS  Google Scholar 

  69. Komatsu H, Kawamoto Y, Ikuno T (2022) Freestanding translucent ZnO–cellulose nanocomposite films for ultraviolet sensor applications. Nanomaterials 12:940. https://doi.org/10.3390/nano12060940

    Article  CAS  Google Scholar 

  70. Cao F, Pan Z, Ji X (2021) An approach for fabrication of micrometer linear ZnO/Ti3C2Tx UV photodetector with high responsivity and EQE. J Appl Phys 129:204503. https://doi.org/10.1063/5.0048840

    Article  CAS  Google Scholar 

  71. Shao D, Yu M, Lian J, Sawyer S (2013) An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 24:295701. https://doi.org/10.1088/0957-4484/24/29/295701

    Article  CAS  Google Scholar 

  72. Su WS, Leung TC, Chan CT (2007) Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys Rev B 76:235413. https://doi.org/10.1103/PhysRevB.76.235413

    Article  CAS  Google Scholar 

  73. Choi M-S, Park T, Kim W-J, Hur J (2020) High-performance ultraviolet photodetector based on a zinc oxide nanoparticle@single-walled carbon nanotube heterojunction hybrid film. Nanomaterials 10:395. https://doi.org/10.3390/nano10020395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University Grants Commission (UGC), India. In addition, the authors are very much grateful to Dr. M. N. Dastur School of Materials Science and Engineering, IIEST Shibpur, for allowing us to perform the whole study of FT-IR spectroscopy.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Pal Chowdhury.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Ethical approval

Not applicable.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, R., Kundu, S., Mukherjee, S. et al. Synthesis and characterisation of carbon nanotubes and zinc oxide composites: sub-millisecond UV response. J Mater Sci 58, 17019–17033 (2023). https://doi.org/10.1007/s10853-023-09058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09058-2

Navigation