Skip to main content
Log in

Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 °C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm−1 has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zni). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g−1 even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Vandijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 87–89, 454–456 (2000)

    Article  Google Scholar 

  2. D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Cryst. Res. Technol. 43, 1041–1045 (2008)

    Article  CAS  Google Scholar 

  3. F. Ochanda, K. Cho, D. Andala, T.C. Keane, A. Atkinson, W.E. Jones, Langmuir 25, 7547–7552 (2009)

    Article  CAS  Google Scholar 

  4. N. Volbers, H. Zhou, C. Knies, D. Pfisterer, J. Sann, D.M. Hofmann, B.K. Meyer, Appl. Phys. A 88, 153–155 (2007)

    Article  CAS  Google Scholar 

  5. D. Bao, H. Gu, A. Kuang, Thin Solid Films 312, 37–39 (1998)

    Article  CAS  Google Scholar 

  6. K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420–1422 (2002)

    Article  CAS  Google Scholar 

  7. X. Xu, C. Cao, J. Magn. Magn. Mater. 321, 2216–2219 (2009)

    Article  CAS  Google Scholar 

  8. L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, Solid State Commun. 145, 525–528 (2008)

    Article  CAS  Google Scholar 

  9. C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573–578 (2005)

    Article  CAS  Google Scholar 

  10. R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308-1–014308-6 (2011)

    Article  Google Scholar 

  11. T-t. Xiong, D-m. LI, W-m. Shi, Lj. Wang, J. Huang, C. Wang, Proc of SPIE 7381, 738124-1–738124-6 (2009)

  12. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Superlattices Microstruct. 50, 234–241 (2011)

    Article  CAS  Google Scholar 

  13. L. Duan, W. Gao, R. Chen, Z. Fu, Solid State Commu 145, 479–481 (2008)

    Article  CAS  Google Scholar 

  14. M. Nirmala, P. Smitha, A. Anukaliani, Superlattices Microstructure 50, 563–571 (2011)

    Article  CAS  Google Scholar 

  15. R. Chauhan, A. Kumar, R.P. Chaudhary, Arch Appl Sci Res 2, 378–385 (2010)

    CAS  Google Scholar 

  16. B. Sankara Reddy, S. Venkatramana Reddy, P. Venkateswara Reddy, N. Koteeswara Reddy, Optoelectron Adv Mat 6, 953–959 (2012)

    Google Scholar 

  17. Q. Pan, K. Huang, S. Ni, F. Yang, S. Lin, D. He, J. Phys. D Appl. Phys. 40, 6829–6833 (2007)

    Article  CAS  Google Scholar 

  18. P. Li, S. Wang, J. Li, Y. Wei, J. Lumin. 132, 220–225 (2012)

    Article  CAS  Google Scholar 

  19. X. Wang, J. Xu, B. Zhang, H. Yu, J. Wang, X. Zhang, J. Yu, Q. Li, Adv. Mater. 18, 2476–2480 (2006)

    Article  CAS  Google Scholar 

  20. H.-J. Lee, C.H. Park, S.-Y. Jeong, K.-J. Yee, C.R. Cho, M.-H. Jung, D.J. Chadi, Appl Phy Lett 88, 06504-1–062504-3 (2006)

    Google Scholar 

  21. O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, Adv. Mater. 18, 1857–1860 (2006)

    Article  CAS  Google Scholar 

  22. S. Udayakumar, V. Renuka, K. Kavitha, J Chem Pharm Res 4(2), 1271–1280 (2012)

    CAS  Google Scholar 

  23. Y.C. Qiu, W. Chen, S.H. Yang, B. Zhang, X.X. Zhang, Y.C. Zhong, K.S. Wong, Cryst. Growth Des. 10, 177–183 (2010)

    Article  CAS  Google Scholar 

  24. P.M. Aneesh, C.T. Cherian, M.K. Jayaraj, T. Endo, JCS Japan 118, 333–336 (2010)

    CAS  Google Scholar 

  25. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Mater. Sci. Eng., B 142, 121–125 (2007)

    Article  CAS  Google Scholar 

  26. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kalt, ACS Nano 2, 1661–1670 (2008)

    Article  CAS  Google Scholar 

  27. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Honggang, S. Jiazhong, F. Wei, Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Article  Google Scholar 

  28. J.A. Peters, N.D. Parashar, N. Rangaraju, B.W. Wessels, Phy Rev B 82, 205207-1–205207-8 (2010)

    Article  Google Scholar 

  29. Y.F. Tian, Y.F. Li, T. Wu, Appl. Phys. Lett. 99, 222503-1–222503-3 (2011)

    Google Scholar 

  30. S. Maensiri, P. Laokul, S. Phokha, J. Magn. Magn. Mater. 305, 381–387 (2006)

    Article  CAS  Google Scholar 

  31. M. He, Y.F. Tian, D. Springer, I.A. Putra, G.Z. Xing, E.E.M. Chia, S.A. Cheong, T. Wu, Appl. Phys. Lett. 99, 222511-1–222511-3 (2011)

    Google Scholar 

  32. Q.Y. Xu, S.Q. Zhou, H. Schmidt, J Alloys Compd 487, 665–667 (2009)

    Article  CAS  Google Scholar 

  33. N.H. Hong, J. Sakai, V. Brize, J. Phys.: Condens. Matter 19, 036219-1–036219-6 (2007)

    Article  Google Scholar 

  34. A.H. Shah, M.B. Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, J. Mater. Sci. Mater. Electron. 24, 2302–2308. (2013). doi:10.1007/s10854-013-1093-6

    Google Scholar 

  35. X. Qiu, L. Li, C. Tang, G. Li, J. Am. Chem. Soc. 129, 11908–11909 (2007)

    Article  CAS  Google Scholar 

  36. A. Kaminski, S. Das Sarma, Phy Rev B 68, 235210-1–235210-6 (2003)

    Article  Google Scholar 

  37. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nature Mater 4, 173–179 (2005)

    Article  CAS  Google Scholar 

  38. L. Liao, B. Yan, Y.F. Hao, G.Z. Xing, J.P. Liu, B.C. Zhao, Z.X. Shen, T. Wu, L. Wang, J.T.L. Thong, C.M. Li, W. Huang, T. Yu, Appl. Phys. Lett. 94, 1131061–1131063 (2009)

    Google Scholar 

  39. Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, T. Wu, Appl Phy Lett 98, 162503-1–162503-3 (2011)

    Google Scholar 

  40. S.B. Ogale, Adv. Mater. 22, 3125–3155 (2010)

    Article  CAS  Google Scholar 

  41. Y. Li, R. Deng, B. Yao, G. Xing, D. Wang, T. Wu, Appl. Phys. Lett. 97, 102506-1–102506-3 (2010)

    Google Scholar 

  42. B. Y. Zhang, B. Yao, Y. F. Li, A. M. Liu, Z. Z. Zhang, B. H. Li, G. Z. Xing, T. Wu, X. B. Qin, D. X. Zhao, C. X. Shan, D. Z. Shen, Appl Phys Lett 99, 182503-1–182503 (2011)

    Google Scholar 

  43. G.Z. Xing, Y.H. Lu, Y.F. Tian, J.B. Yi, C.C. Lim, Y.F. Li, G.P. Li, D.D. Wang, B. Yao, J. Ding, Y.P. Feng, T. Wu, AIP Adv 1, 022152-1–022152-14 (2011)

    Article  Google Scholar 

  44. G.Z. Xing, D.D. Wang, C.J. Cheng, M. He, S. Li, T. Wu, Appl. Phys. Lett. 103, 022402-1–022402-5 (2013)

    Article  Google Scholar 

  45. S.T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva, W.K. Liu, X. Li, D.R. Gamelin, Nat. Nanotechnol. 4, 681–687 (2009)

    Article  CAS  Google Scholar 

  46. D. Wang, Q. Chen, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Nano Lett. 12, 3994–4000 (2012)

    Article  CAS  Google Scholar 

  47. Y. Li, R. Deng, W. Lin, Y. Tian, H. Peng, J. Yi, B. Yao, T. Wu, Phys Rev B 87, 155151-1–155151-7 (2013)

    Google Scholar 

  48. J.M.D. Coey, Solid State Sci. 7, 660–667 (2005)

    Article  CAS  Google Scholar 

  49. G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T. Chien Sum, T. Wu, Appl. Phys. Lett. 96, 112511-1–112511-3 (2010)

    Article  Google Scholar 

  50. T. Yao, W. Yan, Z. Sun, Z. Pan, B. He, Y. Jiang, H. Wei, M. Nomura, Y. Xie, T. Hu, S. Wei, J. Phys. Chem. C 113, 3581–3585 (2009)

    Article  CAS  Google Scholar 

  51. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338–1340 (2004)

    Article  CAS  Google Scholar 

  52. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Prusessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Kim, Y.D. Park, R.G. Wilson, Appl. Phys. Lett. 83, 5488–5490 (2003)

    Article  CAS  Google Scholar 

  53. H.T. Lin, T.S. Chin, J.C. Shih, S.H. Lin, T.M. Hong, R.T.H.F.R. Chen, J.J. Kai, Appl. Phys. Lett. 85, 621–623 (2004)

    Article  CAS  Google Scholar 

  54. D.A. Schwartz, D.R. Gamelan, Adv. Mater. 16, 2115–2119 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. B. K. Reddy (Retd.), Department of Physics, S.V. University, Tirupati and Prof. Y. Prabhakara Reddy, Department of Physics, Sri Padmavati Mahila Visvavidyalayam, Tirupati for the help. Dr. N. K. Reddy wishes to acknowledge the CSIR for the sanction of Senior Research Associate ship under the scheme of Scientist’s pool (No. 13 (8525-A) 2011-Pool).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkatramana Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankara Reddy, B., Venkatramana Reddy, S. & Koteeswara Reddy, N. Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles. J Mater Sci: Mater Electron 24, 5204–5210 (2013). https://doi.org/10.1007/s10854-013-1545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1545-z

Keywords

Navigation