Skip to main content
Log in

CdS-deposited titania nanotubes array heterostructures and its investigation for photocatalytic application under visible light

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titania is a fantastic photocatalyst, although visible excitation is the gold standard due to its broader bandgap. As a solution, doping is used to boost visible light excitation. Cadmium sulphide (CdS) is another well-known photomaterial that forms the best photocatalyst when combined with titania. Because of its organized architecture and large surface area compared to nanoparticles, the nanotubes array draws our attention among the many dimensions of nanomaterials. The conventional procedure for synthesizing titania nanotubes array by sonoelectrochemical synthesis was used in this study, and CdS doping was accomplished using a wet chemical process. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to conduct morphological and compositional analyses. The optical studies were carried out at the same time using UV–visible, photoluminescence and UV–diffused reflectance spectroscopy characterization. CdS adhesion to titania is confirmed by bandgap shifting. To assist photocatalytic investigations, electrochemical impedance studies were conducted. Using a lab-prepared reactor, photocatalytic investigations were carried out, and a plausible mechanism was presented. CdS on TiNTs has a unique flower-like morphology, which has been reported elsewhere, and it demonstrates excellent adhesion, forming the best photocatalytic pair.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Zeng L, Xiao L, Zhang J and Fu H 2020 J. Nanosci. Nanotechnol. 20 4607

    Article  Google Scholar 

  2. Joodi A, Allahyari S, Rahemi N, Hoseini S and Tasbihi M 2020 Ceram. Int. 46 11328

    Article  CAS  Google Scholar 

  3. Li Y, Yang D, Lu S, Qiu X, Qian Y and Li P 2019 ACS Sustain. Chem. Eng. 7 6234

    Article  CAS  Google Scholar 

  4. Li Z, Bian H, Xiao X, Shen J, Zhao C, Lu J et al 2019 ACS Appl. Nano Mater. 2 7372

    Article  CAS  Google Scholar 

  5. Feynman R 2018 Feynman and computation (CRC Press, UK) p 63

  6. He Z, Zhang J, Li X, Guan S, Dai M and Wang S 2020 Small 16 2005051

    Article  CAS  Google Scholar 

  7. Yang J J, Li Z W, Liu X Y, Fang W H and Cui G 2020 Phys. Chem. Chem. Phys. 22 19542

    Article  CAS  Google Scholar 

  8. Tahir M B, Malik M F, Ahmed A, Nawaz T, Ijaz M, Min H S et al 2021 Int. J. Environ. Anal. Chem. 101 2255

    Article  CAS  Google Scholar 

  9. Duolikun T, Thomas P, Lai C W and Leo B F 2020 Magnetochem. Mater. Appl. 66 217

    CAS  Google Scholar 

  10. Xu X, Xiong F, Meng J, Wang X, Niu C, An Q et al 2020 Adv. Funct. Mater. 30 1904398

    Article  CAS  Google Scholar 

  11. Malik R, Tomer V K, Mishra Y K and Lin L 2020 Appl. Phys. Rev. 7 021301

    Article  CAS  Google Scholar 

  12. Zotti A, Zuppolini S, Borriello A and Zarrelli M 2020 Nanomaterials 10 1388

    Article  CAS  Google Scholar 

  13. Kogo G, Xiao B, Danquah S, Lee H, Niyogushima J, Yarbrough K et al 2020 Sci. Rep. 10 1

    Article  CAS  Google Scholar 

  14. Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W et al 2020 Front. Bioeng. Biotechnol. 7 489

    Article  Google Scholar 

  15. Nasrollahzadeh M, Sajjadi M, Soufi G J, Iravani S and Varma R S 2020 Nanomaterials 10 1072

    Article  CAS  Google Scholar 

  16. Feng Y, Rijnaarts H H, Yntema D, Gong Z, Dionysiou D D, Cao Z et al 2020 Water Res. 186 116327

    Article  CAS  Google Scholar 

  17. Xu Y, Ahmed R, Klein D, Cap S, Freedy K, McDonnell S et al 2019 J. Power Sour. 414 242

    Article  CAS  Google Scholar 

  18. Wei W, Lü X, Jiang D, Yan Z, Chen M and Xie J 2014 Dalton Trans. 43 9456

    Article  CAS  Google Scholar 

  19. Mor G K, Varghese O K, Paulose M and Grimes C A 2003 Sens. Lett. 1 42

    Article  CAS  Google Scholar 

  20. Wakefield G, Green M, Lipscomb S and Flutter B 2004 Mater. Sci. Technol. 20 985

    Article  CAS  Google Scholar 

  21. Fujishima A and Honda K 1972 Nature 238 37

    Article  CAS  Google Scholar 

  22. Lu Y H, Xu B, Zhang A H, Yang M and Feng Y P 2011 J. Phys. Chem. 115 18042

    CAS  Google Scholar 

  23. Regonini D and Clemens F J 2015 Mater. Lett. 142 97

    Article  CAS  Google Scholar 

  24. Shin Y and Lee S 2008 Nano Lett. 8 3171

    Article  CAS  Google Scholar 

  25. Montakhab E, Rashchi F and Sheibani S 2020 Appl. Surf. Sci. 534 147581

    Article  CAS  Google Scholar 

  26. Zhang Z, Wang Q, Xu H, Zhang W, Zhou Q, Zeng H et al 2020 Electrochem. Commun. 114 106717

    Article  CAS  Google Scholar 

  27. Liang H C, Li X Z and Nowotny J 2010 In Solid State Phenom. 162 295

    Article  CAS  Google Scholar 

  28. Kaur M, Mehta S K and Kansal S K 2018 J. Environ. Chem. Eng. 6 3631

    Article  CAS  Google Scholar 

  29. Deshpande A and Gupta N M 2010 Int. J. Hydrog. Energy 35 3287

    Article  CAS  Google Scholar 

  30. Ju L, Dai Y, Wei W, Li M, Liang Y and Huang B 2018 Phys. Chem. Chem. Phys. 20 1904

    Article  CAS  Google Scholar 

  31. Mor G K, Shankar K, Varghese O K and Grimes C A 2004 J. Mater. Res. 19 2989

    Article  CAS  Google Scholar 

  32. Cai Q, Paulose M, Varghese O K and Grimes C A 2005 J. Mater. Res. 20 230

    Article  CAS  Google Scholar 

  33. Varghese O K, Paulose M and Grimes C A 2009 Nat. Nanotechnol. 4 592

    Article  CAS  Google Scholar 

  34. Zhai T, Fang X, Li L, Bando Y and Golberg D 2010 Nanoscale 2 168

    Article  CAS  Google Scholar 

  35. Kotkata M F, Masoud A E, Mohamed M B and Mahmoud E A 2009 Phys. E Low Dimens. Syst. Nanostruct. 41 1457

    Article  CAS  Google Scholar 

  36. Manickathai K, Kasi Viswanathan S and Alagar M 2008 Indian J. Pure Appl. Phys. 46 561

    CAS  Google Scholar 

  37. Chen Y, Xing W, Liu Y, Zhang X, Xie Y, Shen C et al 2020 Nanomaterials (Basel, Switzerland) 10 317

    Article  CAS  Google Scholar 

  38. Ali M F B 2020 RSC Adv. 10 44058

    Article  CAS  Google Scholar 

  39. Restrepo G, Valencia S and Marin J M 2010 Open Mater. Sci. J. 4 9

    Article  CAS  Google Scholar 

  40. Murphy A B 2007 Sol. Energy Mater. Sol. Cells 91 1326

    Article  CAS  Google Scholar 

  41. Mexicana De Física S, México A C, Morales E, Mora S, Pal E, Morales A E et al 2007 Rev. Mex. Fis. 53 18

    Google Scholar 

  42. Liu R, Ren F, Su W, He P, Shen C, Zhang L et al 2015 Ceram. Int. 41 14615

    Article  CAS  Google Scholar 

  43. Mollavali Majid, Falamaki Cavus and Rohani Sohrab 2015 Int. J. Hydrog. Energy 40 12239

    Article  CAS  Google Scholar 

  44. El Kissani A, Ait Dads H, Oucharrou S, Welatta F, Elaakib H, Nkhaili L et al 2018 Thin Solid Films 664 66

    Article  CAS  Google Scholar 

  45. Wu H and Zhang Z 2011 Int. J. Hydrog. Energy 36 13481

    Article  CAS  Google Scholar 

  46. Maneb C B, Khobaree R V, Patild R P and Pawara R P 2018 Int. J. Appl. Eng. Res. 13 14372

    Google Scholar 

  47. Makuła P, Pacia M and Macyk W 2018 J. Phys. Chem. Lett. 9 6814

    Article  CAS  Google Scholar 

  48. Aguilar Hernández J, Contreras Puente G, Morale Acevedo A, Vigil Galán O, Cruz Gandarilla F, Vidal-Larramendi J et al 2003 Semicond. Sci. Technol. 18 111

    Article  Google Scholar 

  49. Erdogan N, Park J and Ozturk A 2016 Ceram. Int. 42 16766

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perarasu Thangavelu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufina, R.D.J., Thangavelu, P. CdS-deposited titania nanotubes array heterostructures and its investigation for photocatalytic application under visible light. Bull Mater Sci 45, 174 (2022). https://doi.org/10.1007/s12034-022-02750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02750-0

Keywords

Navigation