Skip to main content
Log in

Influence of morphology on the photocatalytic and fiber optic ammonia gas sensing performance of tin oxide nanostructures by a novel microwave irradiation method

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Tin oxide hexagonal-shaped nanodisks (NDs) and nanowires (NWs) were successfully prepared by one-step microwave irradiation method using cetyltrimethylammonium bromide (CTABr) and polyethylene glycol (PEG) as surfactants. The XRD pattern indicates that SnO2 is crystalline with tetragonal rutile structure. TEM micrographs confirm SnO2 nanodisks, approximately 100 nm in width and 20 nm in thickness, and a straight single SnO2 nanowire with a diameter of about 30 nm and length up to several micrometers for CTAB- and PEG-assisted samples, respectively. The elemental composition and oxidation state were also confirmed through EDS and XPS analyses. Effect of morphology on the photocatalytic performance of SnO2 nanostructures was studied toward degradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. For SnO2 NDs, it was observed that 99% and 97% of MB and RhB dyes were degraded in 100 min of irradiation time. In contrary, the SnO2 NWs showed high sensitivity (71.4 counts/ppm), fast response (35 min) and recovery time (25 min) toward ammonia gas compared to SnO2 NDs. This could be attributed to large surface area and high adsorption of ammonia molecules on the SnO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998)

    Article  CAS  Google Scholar 

  3. N. Barsan, U. Weimar, J. Phys.: Condens. Matter 15, 813 (2003)

    Google Scholar 

  4. M. Batzill, Sensors 6, 1345 (2006)

    Article  CAS  Google Scholar 

  5. Z.H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J.H. Li, Cryst. Growth Des. 7, 1722 (2007)

    Article  CAS  Google Scholar 

  6. F. Lan, X. Wang, X.L. Xu, R.B. Zhang, N. Zhang, React. Kinet. Mech. Catal. 106, 113 (2012)

    Article  CAS  Google Scholar 

  7. I. Yi-YuBu, Optik—Int. J. Light Electron Opt. 147, 39 (2017)

    Article  CAS  Google Scholar 

  8. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 12, 965 (2000)

    Article  CAS  Google Scholar 

  9. B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, J. Phys. Chem. C 112, 6643 (2008)

    Article  CAS  Google Scholar 

  10. J.Z. Wang, N. Du, H. Zhang, J.X. Yu, D.R. Yang, J. Phys. Chem. C 115, 11302 (2011)

    Article  CAS  Google Scholar 

  11. T. Hayakawa, M. Nogami, Sci. Technol. Adv. Mater. 6, 66 (2005)

    Article  CAS  Google Scholar 

  12. F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004)

    Article  CAS  Google Scholar 

  13. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  CAS  Google Scholar 

  14. W. Wang, Y. Tian, X. Li, X. Wang, H. He, Y. Xu, C. He, Appl. Surf. Sci. 261, 890 (2012)

    Article  CAS  Google Scholar 

  15. S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen, J. Mater. Chem. A 1, 4462 (2013)

    Article  CAS  Google Scholar 

  16. B. Mondal, B. Basumatari, J. Das, C. Roychaudhury, H. Saha, N. Mukherjee, J. Mater. Chem. A 1, 4462 (2013)

    Article  CAS  Google Scholar 

  17. W. Tang, J. Wang, P. Yao, X. Li, Sens. Actuator B-Chem. 192, 543 (2014)

    Article  CAS  Google Scholar 

  18. J. Zhang, X. Liu, S. Wu, H. Xu, B.Q. Cao, Sens. Actuator B-Chem. 186, 695 (2013)

    Article  CAS  Google Scholar 

  19. J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, W. Shihua, S. Wang, S. Zhang, J. Phys. Chem. C 115, 5352 (2011)

    Article  CAS  Google Scholar 

  20. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao, Sens. Actuator B-Chem. 199, 339 (2014)

    Article  CAS  Google Scholar 

  21. J. Dianxing, X. Hongyan, Z. Qiu, J. Guo, J. Zhang, B. Cao, Sens. Actuator B-Chem. 200, 288 (2014)

    Article  CAS  Google Scholar 

  22. X. Wang, H. Fan, P. Ren, Colloids Surf., A: Physicochem. Eng. Asp. 419, 140 (2013)

    Article  CAS  Google Scholar 

  23. K.Q. Trunk, V.X. Hien, D.D. Vuong, N.D. Chein, Commun. Phys. 20, 129 (2010)

    Google Scholar 

  24. R. Malik, V.K. Tomer, S. Duhan, S.P. Nehra, P.S. Rana, Energy Environ. Focus 4, 340 (2015)

    Article  Google Scholar 

  25. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, J. Optoelectron. Adv. Mater. 12, 1894 (2010)

    CAS  Google Scholar 

  26. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, M. Thavamani, J. Mater. Sci.: Mater. Electron. 25, 730 (2014)

    CAS  Google Scholar 

  27. M. Kwoka, L. Ottaviano, M. Passacantando, G. Czempik, S. Santucci, J. Szuber, Appl. Surf. Sci. 254, 8089 (2008)

    Article  CAS  Google Scholar 

  28. B. Thomas, B. Skariah, J. Alloy. Compd. 625, 231 (2015)

    Article  CAS  Google Scholar 

  29. X. Mathew, J.P. Enriquez, J. Appl. Phys. 100, 073907 (2006)

    Article  CAS  Google Scholar 

  30. T. Jia, J. Chen, Z. Deng, F. Fu, J. Zhao, X.F. Wang, F. Long, Mater. Sci. Eng., B 189, 32 (2014)

    Article  CAS  Google Scholar 

  31. F. Gu, S.F. Wang, M.K. Lu, X.F. Cheng, S.F. Liu, G.J. Zhou, J. Cryst. Growth 262, 182 (2004)

    Article  CAS  Google Scholar 

  32. B. Cheng, J.M. Russell, W.S. Shi, L. Zhang, S.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. A. Aronne, M. Fantauzzi, C. Imparato, D. Atzei, L. De Stefano, G. D’Errico, F. Sannino, I. Rea, D. Pirozzi, B. Elsener, P. Pernice, A. Rossi, RSC Adv. 7, 2373 (2017)

    Article  CAS  Google Scholar 

  34. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  35. Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Energy Environ. Sci. 4, 2922 (2011)

    Article  CAS  Google Scholar 

  36. Y. Ohko, A. Fujishima, K. Hashimoto, J. Phys. Chem. B 102, 1724 (1998)

    Article  CAS  Google Scholar 

  37. M. Parthibavarman, B. Renganathan, D. Sastikumar, Curr. Appl. Phys. 13, 1537 (2013)

    Article  Google Scholar 

  38. B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Opt. Laser Technol. 43, 1398 (2011)

    Article  CAS  Google Scholar 

  39. B. Renganathan, G. Gobi, D. Sastikumar, R. Srinivasan, A.C. Bose, Sens. Lett. 8, 292 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parthibavarman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthibavarman, M., Sathishkumar, S. & Prabhakaran, S. Influence of morphology on the photocatalytic and fiber optic ammonia gas sensing performance of tin oxide nanostructures by a novel microwave irradiation method. J IRAN CHEM SOC 16, 2315–2325 (2019). https://doi.org/10.1007/s13738-019-01702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01702-6

Keywords

Navigation