Skip to main content
Log in

Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work is presented a facile method for the elaboration of starch–chitosan films with functionalized particles of titanium dioxide. The chemical modification of the nanoparticles allows to improve the mechanical properties of the film itself. The films containing the TiO2 functionalized with the alkoxysilane presented an improvement in the tensile strength of 33%. Also, the insertion of silver nanodots reinforces the antimicrobial properties of the starch–chitosan films. This method of fabrication of biodegradable films represents an excellent green choice for possible applications as food packaging due to their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571. https://doi.org/10.1016/j.polymertesting.2005.02.008

    Article  CAS  Google Scholar 

  2. Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. https://doi.org/10.1080/10408390600846366

    Article  CAS  PubMed  Google Scholar 

  3. Sudhakar M, Trishul A, Doble M et al (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stabil 92:1743. https://doi.org/10.1016/j.polymdegradstab.2007.03.029

    Article  CAS  Google Scholar 

  4. Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Green Energy Technol. https://doi.org/10.1007/978-1-4471-4108-2

    Article  Google Scholar 

  5. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. https://doi.org/10.1080/10408398.2010.500508

    Article  CAS  PubMed  Google Scholar 

  6. Lian Z, Zhang Y, Zhao Y (2016) Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite fi lms and nano-TiO2 migration from fi lm matrix in food simulants. Innov Food Sci Emerg Technol 33:145–153. https://doi.org/10.1016/j.ifset.2015.10.008

    Article  CAS  Google Scholar 

  7. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78. https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  CAS  Google Scholar 

  8. Dang QF, Zou SH, Chen XG, et al (2012) Characterizations of chitosan-based highly porous hydrogel: the effects of the solvent. https://doi.org/10.1002/app

  9. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  10. Zhang W, Chen J, Chen Y et al (2016) Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr Polym 138:59–65. https://doi.org/10.1016/j.carbpol.2015.11.031

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Xiao G, Wang Y et al (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 169:101–107. https://doi.org/10.1016/j.carbpol.2017.03.073

    Article  CAS  PubMed  Google Scholar 

  12. Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45:372–376. https://doi.org/10.1016/j.ijbiomac.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  13. Kim KM, Son JH, Kim S et al (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci E Food Eng Phys Prop 71:119–124. https://doi.org/10.1111/j.1365-2621.2006.tb15624.x

    Article  Google Scholar 

  14. Caner C, Vergano PJ, Wiles JL (1998) chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053. https://doi.org/10.1111/j.1365-2621.1998.tb15852.x

    Article  CAS  Google Scholar 

  15. Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247. https://doi.org/10.1016/j.carbpol.2010.06.058

    Article  CAS  Google Scholar 

  16. Pinotti A, García MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocoll 21:66–72. https://doi.org/10.1016/j.foodhyd.2006.02.001

    Article  CAS  Google Scholar 

  17. Niroomand F, Khosravani A, Younesi H (2016) Fabrication and properties of cellulose–nanochitosan biocomposite film using ionic liquid. Cellulose 23:1311–1324. https://doi.org/10.1007/s10570-016-0872-7

    Article  CAS  Google Scholar 

  18. Diebold U (2003) The surface science of titanium dioxide. Appl Surf Sci 48:53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  19. Bonhôte P, Gogniat E, Grätzel M, Ashrit P (1999) Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films 350:269–275. https://doi.org/10.1016/S0040-6090(99)00229-1

    Article  Google Scholar 

  20. Solís-Gómez A, Neira-Velázquez MG, Morales J et al (2014) Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surf A Physicochem Eng Asp 451:66–74. https://doi.org/10.1016/j.colsurfa.2014.03.021

    Article  CAS  Google Scholar 

  21. Clayton J (1997) Pigment/dispersant interactions in water-based coatings. Surf Coat Int 80:414–420. https://doi.org/10.1007/BF02699712

    Article  CAS  Google Scholar 

  22. Kulkarni SA, Ogale SB, Vijayamohanan KP (2008) Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci 318:372–379. https://doi.org/10.1016/j.jcis.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  23. Han X, Wang L, Li J et al (2011) Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane. Appl Surf Sci 257:9525–9531. https://doi.org/10.1016/j.apsusc.2011.06.054

    Article  CAS  Google Scholar 

  24. González A, Pérez E, Almendarez A et al (2016) Calcium pimelate supported on TiO2 nanoparticles as isotactic polypropylene prodegradant. Polym Bull 73:39–51. https://doi.org/10.1007/s00289-015-1469-2

    Article  CAS  Google Scholar 

  25. Quiñones-jurado ZV, Waldo-mendoza MÁ, Aguilera-bandin HM et al (2014) silver nanoparticles supported on TiO2 and their antibacterial properties: effect of surface confinement and nonexistence of plasmon resonance. Mater Sci Appl 5:895–903

    Google Scholar 

  26. Mosquera A (2008) Obtención de nano-estructuras bi-dimensionales de SnO2 utilizando el método pechini: estudio de la conformación de la resina. Cerámica y Vidrio estudio de la conformación de la resina 286:278–286

    Google Scholar 

  27. Majoul N, Aouida S, Bessaïs B, Si S- (2015) Applied surface science progress of porous silicon APTES-functionalization by FTIR investigations. Appl Surf Sci 331:388–391

    Article  CAS  Google Scholar 

  28. Taguchi M, Takami S, Naka T, Adschiri T (2009) Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water: tailor-made water-soluble CeO2 nanocrystals. Cryst Growth Des 9:5297–5303. https://doi.org/10.1021/cg900809b

    Article  CAS  Google Scholar 

  29. Somphon W, Haller KJ (2013) Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids. J Cryst Growth 362:252–258. https://doi.org/10.1016/j.jcrysgro.2012.01.059

    Article  CAS  Google Scholar 

  30. Mosquera E, Rosas N, Debut A et al (2015) Síntesis y Caracterización de Nanopartículas de Dióxido de Titanio Obtenidas por el Método de Sol-Gel. Revis Politéc 36:7

    Google Scholar 

  31. Mart F, Mart JR (2008) Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 19:065711. https://doi.org/10.1088/0957-4484/19/6/065711

    Article  CAS  Google Scholar 

  32. Díaz-Visurraga J, Meléndrez MF, García A et al (2010) Semitransparent chitosan-TiO2 nanotubes composite film for food package applications. J Appl Polym Sci 116:3503–3515. https://doi.org/10.1002/app.31881

    Article  CAS  Google Scholar 

  33. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT Food Sci Technol 41:1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  CAS  Google Scholar 

  34. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001

    Article  CAS  Google Scholar 

  35. Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219. https://doi.org/10.1016/j.jcs.2009.11.014

    Article  CAS  Google Scholar 

  36. Salam A, Pawlak JJ, Venditti RA, El-Tahlawy K (2010) Synthesis and characterization of starch citrate–chitosan foam with superior water and saline absorbance properties. Biomacromol 11:1453–1459. https://doi.org/10.1021/bm1000235

    Article  CAS  Google Scholar 

  37. Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342. https://doi.org/10.1016/j.carbpol.2010.11.041

    Article  CAS  Google Scholar 

  38. Reidy B, Haase A, Luch A et al (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. https://doi.org/10.3390/ma6062295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li J, Zivanovic S, Davidson PM, Kit K (2010) Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr Polym 79:786–791. https://doi.org/10.1016/j.carbpol.2009.09.028

    Article  CAS  Google Scholar 

  40. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120:193–198. https://doi.org/10.1016/j.foodchem.2009.10.006

    Article  CAS  Google Scholar 

  41. Vargas M, Albors A, Chiralt A, González-Martínez C (2009) Characterization of chitosan–oleic acid composite films. Food Hydrocoll 23:536–547. https://doi.org/10.1016/j.foodhyd.2008.02.009

    Article  CAS  Google Scholar 

  42. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. https://doi.org/10.3144/expresspolymlett.2009.46

    Article  CAS  Google Scholar 

  43. Llanos JHR, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382. https://doi.org/10.1016/j.ijbiomac.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Lozano-Navarro IJ, Díaz-Zavala PN, Velasco-Santos C et al (2018) Chitosan-starch films with natural extracts: physical, chemical. Morphol Thermal Prop, Mater, p 11

    Google Scholar 

Download references

Acknowledgements

The authors want to thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship granted that allow the fulfillment of this work and Mariana Gisela Peña Juárez for the assistance in the language editing. Amir Gonzalez thanks Tecnologico Nacional de Mexico for the support of the Project 6409.18-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Gonzalez-Calderon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo-Montesinos, J., Gámez-Cordero, J., Zarraga, R. et al. Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polym. Bull. 77, 107–133 (2020). https://doi.org/10.1007/s00289-019-02740-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02740-z

Keywords

Navigation