Skip to main content
Log in

Lithiated poly (ether ether ketone) separators with excellent thermal stability and electrolyte wettability for lithium-ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The separators with excellent thermal stability and electrolyte wettability are pivotal for ensuring the safety and performance of lithium-ion batteries (LIBs). Poly (ether ether ketone) (PEEK) is a potential separator material that meets these criteria. However, the poor solubility and high melting temperature of PEEK limit its practical production and application. Herein, we report a safe and convenient strategy to fabricate lithiated poly (ether ether ketone) (LPEEK) separators via lithiation of PEEK and thermally induced phase separation below the melting point. And the pore structure of LPEEK separators can be regulated by the amount of polyvinylpyrrolidone. Compared with commercial polypropylene (PP) separators and other PEEK separators, our LPEEK separators exhibit excellent thermal stability (LPEEK, almost no change at 200 °C; PP, shrink 4.4% at 100 °C) and electrolyte wettability (electrolyte contact angle: LPEEK, 0°; PP, 37.9°). Meanwhile, the LPEEK separators can still be used normally after 200 °C high-temperature treatment and are promising candidates for the LIB separators used at high temperatures. The proposed method holds promise for the industrial production of PEEK separators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Harper G, Sommerville R, Kendrick E et al (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86

    Article  CAS  Google Scholar 

  2. Tan DHS, Chen YT, Yang H et al (2021) Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373:1494–1499

    Article  CAS  Google Scholar 

  3. Ye Y, Chou LY, Liu Y et al (2020) Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat Energy 5:786–793

    Article  CAS  Google Scholar 

  4. Saverina EA, Sivasankaran V, Kapaev RR et al (2020) An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem 22:359–367

    Article  CAS  Google Scholar 

  5. Liu H, Zhu Z, Yan Q et al (2020) A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585:63–67

    Article  CAS  Google Scholar 

  6. Ji H, Wu J, Cai Z et al (2020) Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat Energy 5:213–221

    Article  CAS  Google Scholar 

  7. Kim T, Song W, Son DY, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7:2942–2964. https://doi.org/10.1039/C8TA10513H

    Article  CAS  Google Scholar 

  8. Long MC, Wang T, Duan PH et al (2022) Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. J Energy Chem 65:9–18

    Article  CAS  Google Scholar 

  9. Sun X, Li M, Ren S, Lei T, Lee SY, Lee S, Wu Q (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. J Power Sources 454:227878

    Article  CAS  Google Scholar 

  10. Yan S, Chen X, Zhou P, Wang P, Zhou H, Zhang W, Xia Y, Liu K (2022) Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode. J Energy Chem 67:467–473

    Article  CAS  Google Scholar 

  11. Deng L, Wang Y, Cai C, Wei Z, Fu Y (2021) 3D-cellulose acetate-derived hierarchical network with controllable nanopores for superior Li+ transference number, mechanical strength and dendrites hindrance. Carbohydr Polym 274:118620

    Article  CAS  Google Scholar 

  12. Li J, Zhang Y, Shang R, Cheng C, Cheng Y, Xing J, Wei Z, Zhao Y (2021) Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Mater 43:143–157

    Article  CAS  Google Scholar 

  13. Klein S, Wrogemann JM, van Wickeren S et al (2022) Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523|| graphite lithium ion cells. Adv. Energy Mater. 12:2102

    Article  Google Scholar 

  14. Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y (2018) Highly safe lithium-ion batteries: High strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sources 400:502–510

    Article  CAS  Google Scholar 

  15. Chen WJ, Zhao CX, Li BQ, Yuan TQ, Zhang Q (2021) Lignin-derived materials and their applications in rechargeable batteries. Green Chem 24:565–584

    Article  CAS  Google Scholar 

  16. Yang B, Yang Y, Xu X et al (2022) Hierarchical microstructure and performance of PVDF/PMMA/SiO2 lithium battery separator fabricated by thermally-induced phase separation (TIPS). J Mater Sci 57:11274–11288. https://doi.org/10.1007/s10853-022-07310-9

    Article  CAS  Google Scholar 

  17. Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4:540–550

    Article  Google Scholar 

  18. Wang F, Ke X, Shen K, Zhu L, Yuan C (2022) A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv Mater Technol 7:2100772

    Article  Google Scholar 

  19. Niu X, Li J, Song G, Li Y, He T (2022) Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery. J Mater Sci 57:7042–7055. https://doi.org/10.1007/s10853-022-07111-0

    Article  CAS  Google Scholar 

  20. Niu Y, Zheng S, Song P, Zhang X, Wang C (2021) Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Compos Pt B 212:108715

    Article  CAS  Google Scholar 

  21. Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z (2022) Based on confined polymerization: In situ synthesis of PANI/PEEK composite film in one-step. Adv Sci 9:2103706

    Article  CAS  Google Scholar 

  22. Li J, Niu X, Song J, Li Y, Li X, Hao W, Fang J, He T (2019) Harvesting vapor by hygroscopic acid to create pore: Morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. J Membr Sci 577:1–11

    Article  Google Scholar 

  23. Liu J, Mo Y, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y (2019) Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl Energ Mater 2:3886–3895

    Article  CAS  Google Scholar 

  24. Zhang S, Feng Z, Hu Y et al (2021) Endowing polyetheretherketone implants with osseointegration properties: In situ construction of patterned nanorod arrays. Small 18:2105589

    Article  Google Scholar 

  25. Lyu H, Jiang N, Hu J, Li Y, Zhou N, Zhang D (2022) Preparing water-based phosphorylated PEEK sizing agent for CF/PEEK interface enhancement. Compos Sci Technol 217:109096

    Article  CAS  Google Scholar 

  26. Li Z, Wang W, Han Y, Zhang L, Li S, Tang B, Xu S, Xu Z (2018) Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183

    Article  CAS  Google Scholar 

  27. Li Z, Cao T, Zhang Y, Han Y, Xu S, Xu Z (2017) Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone). J Membr Sci 540:422–429

    Article  CAS  Google Scholar 

  28. Li H, Zhang B, Lin B, Yang Y, Zhao Y, Wang L (2018) Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J Electrochem Soc 165:A939–A946

    Article  CAS  Google Scholar 

  29. Li H, Zhang B, Liu W et al (2018) Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries. Electrochim Acta 290:150–164

    Article  CAS  Google Scholar 

  30. Li D, Shi D, Feng K, Li X, Zhang H (2017) Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci 530:125–131

    Article  CAS  Google Scholar 

  31. Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, Lee YM, Drioli E (2014) PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Membr Sci 471:237–246

    Article  CAS  Google Scholar 

  32. Li M, Zhang Z, Yin Y et al (2020) Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces 12:3610–3616

    Article  CAS  Google Scholar 

  33. Yuan M, Liu K (2020) Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J Energy Chem 43:58–70

    Article  Google Scholar 

  34. Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym 230:115570

    Article  CAS  Google Scholar 

  35. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 142:330–336

    Article  CAS  Google Scholar 

  36. Deng J, Cao D, Li L, Chen Y, Zhang G, Yang X (2021) Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery. J Mater Sci 56:15215–15228. https://doi.org/10.1007/s10853-021-06201-9

    Article  CAS  Google Scholar 

  37. Lagadec MF, Zahn R, Wood V (2018) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25

    Article  Google Scholar 

  38. Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242

    Article  CAS  Google Scholar 

  39. Wang Y, Duan J, Du X et al (2021) High performance of polyethylene composite separators modified by carbon nanotube, lithium salt and SiO2 nanoparticles for lithium ion batteries. Compos Commun 28:100976

    Article  Google Scholar 

  40. Jamalpour S, Ghahramani M, Ghaffarian SR, Javanbakht M (2021) Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride). Polymer 228:123924

    Article  CAS  Google Scholar 

  41. Zhou M, Feng C, Xiong R, Li L, Huang T, Li M, Zhang Y, Zhou M (2022) Molecular insights into the structure and property variation of the pressure-induced solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 14:24875–24885

    Article  CAS  Google Scholar 

  42. Li H, Niu D, Zhou H, Chao C, Wu L, Han P (2018) Preparation and characterization of PVDF separators for lithium ion cells using hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) as additive. Appl Surf Sci 440:186–192

    Article  CAS  Google Scholar 

  43. Xu R, Sheng L, Gong H et al (2021) High-performance Al2O3/PAALi composite separator prepared by water-based slurry for high-power density lithium-based battery. Adv Eng Mater 23:2001009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Projects of International Cooperation and Exchanges (Grant Nos. 52020105012) and the Fundamental Research Funds for the Central Universities (Grant Nos. YCJJ202202004, 2021yjsCXCY023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 917 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xiong, R., Wang, X. et al. Lithiated poly (ether ether ketone) separators with excellent thermal stability and electrolyte wettability for lithium-ion battery. J Mater Sci 57, 18980–18992 (2022). https://doi.org/10.1007/s10853-022-07761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07761-0

Navigation