Skip to main content

Advertisement

Log in

Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nowadays, commercial polypropylene (PP) and polyethylene separators in lithium-ion batteries (LIBs) still remain significant challenges of irreversible deformation, thermal shrinkage or even melting phenomena under external forces and high operating temperature, resulting in short circuit and thermal runaway of the LIBs. Herein, a kind of biphenyl polyimide (PI) nanofiber separator coated with SiO2 nanoparticles (SiO2–PI) is prepared via a simple and effective in situ dispersion method coupled with electrospinning technology and used as the separator of LIBs. The combination effect of the three-dimensional network and the extremely high porosity of 92% originating from the electrospinning technology as well as the well-dispersed SiO2 nanoparticles provides an ultrahigh mechanical flexibility, thermal stability, electrolyte wettability and ionic conductivity of the obtained SiO2–PI separator compared to the classical PP separator. These superior properties of the SiO2–PI separator endow the obtained LIBs with much enhanced electrochemical performances. For example, the initial specific discharge capacity of the SiO2–PI-based LIB is up to 158.4 mAh g−1 at 0.1 C and 125.7 mAh g−1 at 1 C, which can be retained at 90% after 100 cycles. These values, are much better than those of the PP-based LIB, i.e., 156.1 mAh g−1, 100.8 mAh g−1 and 76%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M et al (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Google Scholar 

  2. Cheng H, Shapter JG, Li Y et al (2021) Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem 57:451–468

    Google Scholar 

  3. Karuppiah C, Hsieh Y, Beshahwured SL et al (2020) Poly (vinyl alcohol)/melamine composite containing LATP nanocrystals as a high-performing nanofibrous membrane separator for high-power, high-voltage lithium-ion batteries. ACS Appl Energy Mater 3(9):8487–8499

    CAS  Google Scholar 

  4. Patel A, Wilcox K, Li Z et al (2020) High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Appl Mater Interfaces 12(23):25756–25766

    CAS  Google Scholar 

  5. Zhang T, Tian T, Shen B et al (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14

    CAS  Google Scholar 

  6. Pai J, Hsieh C, Lee C et al (2021) Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J Power Sources 482:229054

    CAS  Google Scholar 

  7. Costa CM, Lizundia E, Lanceros-Méndez S (2020) Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog Energy Combust Sci 79:100846

    Google Scholar 

  8. Kong L, Liu B, Ding J et al (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250

    CAS  Google Scholar 

  9. Li M, Sheng L, Zhang H et al (2020) Effect of the heat treatment temperature on mechanical and electrochemical properties of polyimide separator for lithium ion batteries. J Mater Sci 55(34):16158–16170. https://doi.org/10.1007/s10853-020-05197-y

    Article  CAS  Google Scholar 

  10. Dong G, Liu B, Sun G et al (2019) TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci 577:249–257

    CAS  Google Scholar 

  11. Chen W, Liu Y, Ma Y et al (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    CAS  Google Scholar 

  12. Arifeen WU, Kim M, Ting D et al (2020) Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater Chem Phys 245:122780

    Google Scholar 

  13. Gao Y, Sang X, Chen Y et al (2020) Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery. J Mater Sci 55(8):3549–3560. https://doi.org/10.1007/s10853-019-04218-9

    Article  CAS  Google Scholar 

  14. Zhou X, Yue L, Zhang J et al (2013) A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J Electrochem Soc 160(9):A1341–A1347

    CAS  Google Scholar 

  15. Li Z, Wang W, Han Y et al (2018) Ether modified poly (ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183

    CAS  Google Scholar 

  16. Ma X, Kolla P, Yang R et al (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423

    CAS  Google Scholar 

  17. Orendorff CJ, Lambert TN, Chavez CA et al (2013) Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv Energy Mater 3(3):314–320

    CAS  Google Scholar 

  18. Shi C, Dai J, Huang S et al (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J Membr Sci 518:168–177

    CAS  Google Scholar 

  19. Sarkar A, Shrotriya P, Chandra A (2019) Modeling of separator failure in lithium-ion pouch cells under compression. J Power Sources 435:226756

    CAS  Google Scholar 

  20. Yanilmaz M, Dirican M, Zhang X (2014) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133:501–508

    CAS  Google Scholar 

  21. Li M, Sheng L, Xu R et al (2021) Enhanced the mechanical strength of polyimide (PI) nanofiber separator via PAALi binder for lithium ion battery. Compos Commun 24:100607

    Google Scholar 

  22. Lu Z, Sui F, Miao Y et al (2021) Polyimide separators for rechargeable batteries. J Energy Chem 58:170–197

    Google Scholar 

  23. Ding Y, Hou H, Zhao Y et al (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103

    CAS  Google Scholar 

  24. Sun G, Dong G, Kong L et al (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447

    CAS  Google Scholar 

  25. Wang L, Liu F, Shao W et al (2019) Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Composites Commun 16:150–157

    Google Scholar 

  26. Dai J, Shi C, Li C et al (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ Sci 9(10):3252–3261

    CAS  Google Scholar 

  27. Jia S, Long J, Li J et al (2020) Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries. J Mater Sci 55(30):14907–14921. https://doi.org/10.1007/s10853-020-05051-1

    Article  CAS  Google Scholar 

  28. Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121

    CAS  Google Scholar 

  29. Smith SA, Park JH, Williams BP et al (2017) Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance. J Mater Sci 52(7):3657–3669. https://doi.org/10.1007/s10853-016-0574-4

    Article  CAS  Google Scholar 

  30. Cai M, Yuan D, Zhang X et al (2020) Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources 461:228123

    CAS  Google Scholar 

  31. Li Y, Li Q, Tan Z (2019) A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources 443:227262

    CAS  Google Scholar 

  32. Xu K, Qin Y, Xu T et al (2019) Combining polymeric membranes with inorganic woven fabric: towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Membr Sci 592:117364

    CAS  Google Scholar 

  33. Zheng H, Wang Z, Shi L et al (2019) Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J Colloid Interface Sci 554:29–38

    CAS  Google Scholar 

  34. Yanilmaz M, Lu Y, Zhu J et al (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol–gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212

    CAS  Google Scholar 

  35. Yanilmaz M, Lu Y, Dirican M et al (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65

    CAS  Google Scholar 

  36. Cho J, Jung Y, Lee YS et al (2017) High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membr Sci 535:151–157

    CAS  Google Scholar 

  37. Topuz F, Abdulhamid MA, Holtzl T et al (2021) Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt addition. Mater Des 198:109280

    CAS  Google Scholar 

  38. Allen J (2020) Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep 6:217–224

    Google Scholar 

  39. Wang Q, Mao B, Stoliarov SI et al (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131

    Google Scholar 

  40. Sun G, Kong L, Liu B et al (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139

    CAS  Google Scholar 

  41. Sun G, Liu B, Niu H et al (2020) In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Membr Sci 595:117509

    CAS  Google Scholar 

  42. Tang Z, Li S, Li Y et al (2020) Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy 69:104399

    CAS  Google Scholar 

  43. Kong L, Wang Y, Yu H et al (2019) In situ armoring: a robust, High-wettability, and fire-resistant hybrid Separator for advanced and safe batteries. ACS Appl Mater Interfaces 11(3):2978–2988

    CAS  Google Scholar 

  44. Costa CM, Lee Y, Kim J et al (2019) Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mate 22:346–375

    Google Scholar 

  45. Wang Y, Wang S, Fang J et al (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254

    CAS  Google Scholar 

  46. Yim T, Ha H, Park M et al (2013) A facile method for construction of a functionalized multi-layered separator to enhance cycle performance of lithium manganese oxide. RSC Adv 3(48):25657–25661

    CAS  Google Scholar 

  47. Cho W, Kim S, Song JH et al (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50

    CAS  Google Scholar 

  48. Yoo J, Shin W, Koo SM et al (2015) Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles. J Power Sources 295:149–155

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC, 21875046) and the Natural Science Foundation of Guangdong Province (2019A1515011525).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-qing Zhang or Xiao-qing Yang.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1634 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Jh., Cao, Dq., Li, Lj. et al. Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery. J Mater Sci 56, 15215–15228 (2021). https://doi.org/10.1007/s10853-021-06201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06201-9

Navigation