Skip to main content
Log in

A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Coating commercial porous polyolefin separators with inorganic materials can improve the thermal stability of the polyolefin separators and hence improve the safety of lithium-ion batteries. Several different inorganic materials have been studied for the coating. However, there lacks a study on how different inorganic materials affect the properties of separators, in terms of thermal stability and cell performance. Herein, we present such a study on coating a commercial polypropylene separator with four inorganic materials, i.e., Al2O3, SiO2, ZrO2 and zeolite. All inorganic coatings have improved thermal stability of the separators although with differences. The coating layers add 28%–45% of electrical resistance compared with the pure polypropylene separator, but all the cells prepared with the coated polypropylene separators have the same electrical chemical performance as the uncoated separator in terms of rate capability and capacities at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J B, Park K S. The li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176

    Article  CAS  Google Scholar 

  2. Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie International Edition, 2012, 51(40): 9994–10024

    Article  CAS  Google Scholar 

  3. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012, 208: 210–224

    Article  CAS  Google Scholar 

  4. Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006, 155(2): 401–414

    Article  CAS  Google Scholar 

  5. Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603

    Article  CAS  Google Scholar 

  6. Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014, 5: 5193

    Article  CAS  Google Scholar 

  7. Chen Z, Hsu P C, Lopez J, Li Y, To JWF, Liu N,Wang C, Andrews Sean C, Liu J, Cui Y, Bao Z. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 15009

    Article  CAS  Google Scholar 

  8. Augustin S, Hennige V, Hörpel G, Hying C. Ceramic but flexible: New ceramic membrane foils for fuel cells and batteries. Desalination, 2002, 146(1–3): 23–28

    Article  CAS  Google Scholar 

  9. Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. The functional separator coated with core-shell structured silica-poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science, 2015, 474: 148–155

    Article  CAS  Google Scholar 

  10. Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007, 164(1): 351–364

    Article  CAS  Google Scholar 

  11. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014, 7(12): 3857–3886

    Article  CAS  Google Scholar 

  12. Huang X, Hitt J. Lithium ion battery separators: Development and performance characterization of a composite membrane. Journal of Membrane Science, 2013, 425-426: 163–168

    Article  CAS  Google Scholar 

  13. Jeong H S, Lee S Y. Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 2011, 196(16): 6716–6722

    Article  CAS  Google Scholar 

  14. Fu D, Luan B, Argue S, Bureau M N, Davidson I J. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources, 2012, 206: 325–333

    Article  CAS  Google Scholar 

  15. Kim M, Park J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. Journal of Power Sources, 2012, 212: 22–27

    Article  CAS  Google Scholar 

  16. Fang L F, Shi J L, Jiang J H, Li H, Zhu B K, Zhu L P. Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Advances, 2014, 4(43): 22501–22508

    Article  CAS  Google Scholar 

  17. Prasanna K, Kim C S, Lee C W. Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Materials Chemistry and Physics, 2014, 146(3): 545–550

    Article  CAS  Google Scholar 

  18. Zhang P, Chen L, Shi C, Yang P, Zhao J. Development and characterization of silica tube-coated separator for lithium ion batteries. Journal of Power Sources, 2015, 284: 10–15

    Article  CAS  Google Scholar 

  19. Jeong H S, Hong S C, Lee S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science, 2010, 364(1–2): 177–182

    Article  CAS  Google Scholar 

  20. Jeong H S, Kim D W, Jeong Y U, Lee S Y. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources, 2010, 195(18): 6116–6121

    Article  CAS  Google Scholar 

  21. Lee T, Kim W K, Lee Y, Ryou M H, Lee Y M. Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromolecular Research, 2014, 22(11): 1190–1195

    Article  CAS  Google Scholar 

  22. Kim K, Hepowit L, Kim J C, Lee Y G, Ko J. Enhanced separator properties by coating alumina nanoparticles with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) binder for lithium-ion batteries. Korean Journal of Chemical Engineering, 2015, 32(4): 717–722

    Article  CAS  Google Scholar 

  23. Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L. Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochimica Acta, 2015, 159: 61–65

    Article  CAS  Google Scholar 

  24. Yeon D, Lee Y, Ryou M H, Lee Y M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta, 2015, 157: 282–289

    Article  CAS  Google Scholar 

  25. Dong X L, Mi W L, Yu L H, Jin Y, Lin Y S. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials, 2016, 226: 406–414

    Article  CAS  Google Scholar 

  26. Zhang Z, Li X, Shi L, Ramadass P, Halmo P M, Zhang X. Separator membranes for lithium ion batteries and related methods. US Patent, 20140045033 A1, 2014

    Google Scholar 

  27. Call R W, Fulk C W, Shi L, Zhang X, Nguyen K V. Co-extruded, multi-layered battery separator. US Patent, 2008: US2008/0118827 A1

    Google Scholar 

  28. Yu L H, Jin Y, Lin Y S. Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder. RSC Advances, 2016, 6(46): 40002–40009

    Article  CAS  Google Scholar 

  29. An M Y, Kim H T, Chang D R. Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. Journal of Solid State Electrochemistry, 2014, 18(7): 1807–1814

    Article  CAS  Google Scholar 

  30. Shin W K, Kim D W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. Journal of Power Sources, 2013, 226(0): 54–60

    Article  CAS  Google Scholar 

  31. Arora P, Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419–4462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the China Electric Power Research Institute (CEPRI) on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Y. S. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Miao, J., Jin, Y. et al. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front. Chem. Sci. Eng. 11, 346–352 (2017). https://doi.org/10.1007/s11705-017-1648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1648-9

Keywords

Navigation