Skip to main content
Log in

Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hole transport materials (HTMs), especially dopant-free hole transport materials, are getting attention in enhancing the power conversion efficiencies and stabilities of organic solar cells (OSCs). Herein, we have designed efficient dopant-free HTMs (DM1–DM5) from an outstanding synthetic DFM molecule (having 20.6% PCE). Photo-physical, photovoltaic, optoelectronic and structural-property relationship of newly designed molecules are extensively studied and compared with DFM (R). Density functional theory (DFT) and time-dependent-density functional theory (TD-DFT) have been employed to investigate the alignment of frontier molecular orbitals (FMOs), optical properties, density of states along with transition density matrix, binding and excitation energy, reorganizational energies and for open-circuit voltages of all newly designed molecules. Red-shifting in absorption spectrum offers high power conversion efficiencies, and our tailored molecules exhibit red-shifting in absorption spectrum (λmax = 391–429 nm) as compared to R (λmax = 396 nm). In addition, our all designed molecules expressed better hole transport ability (λh = 0.0056–0.0089 eV) as compared to R (λh = 0.0101 eV). Similarly, DM1DM5 disclosed narrow HOMO–LUMO energy gap which causes maximum charge transfer from excited HOMO to excited LUMO. The theoretical study of DM3/PC61BM and DM3/Y6 complexes is also performed in order to understand the shifting of charge between donor and acceptor molecules. Results of all analysis clearly show the efficient designing of dopant-free (DM1–DM5) molecules and their possible potential to fabricate a high performance and stable organic solar cells devices. Therefore, the theoretical proposed molecules are recommended to experimentalists for future highly efficient organic solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on Meso-Superstructured organometal halide Perovskites. Science 338:643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  2. Heo JH, Im SH, Noh JH, Mandal TN, Lim C-S, Chang JA, Lee YH, Kim H, Sarkar A, Nazeeruddin MK, Grätzel M, Il Seok S (2013) Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:486–491. https://doi.org/10.1038/nphoton.2013.80

    Article  CAS  Google Scholar 

  3. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319. https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  4. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546. https://doi.org/10.1126/science.1254050

    Article  CAS  Google Scholar 

  5. Teh CH, Daik R, Lim EL, Yap CC, Ibrahim MA, Ludin NA, Sopian K, Mat Teridi MA (2016) A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells. J Mater Chem A 4:15788–15822. https://doi.org/10.1039/C6TA06987H

    Article  CAS  Google Scholar 

  6. Kung P, Li M, Lin P, Chiang Y, Chan C, Guo T, Chen P (2018) A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces 5:1800882. https://doi.org/10.1002/admi.201800882

    Article  CAS  Google Scholar 

  7. Osedach TP, Andrew TL, Bulović V (2013) Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy Environ Sci 6:711–718. https://doi.org/10.1039/c3ee24138f

    Article  CAS  Google Scholar 

  8. Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D (2017) Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ Sci 10:1530–1539. https://doi.org/10.1039/C7EE00899F

    Article  CAS  Google Scholar 

  9. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13:460–466. https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  10. Jeon NJ, Na H, Jung EH, Yang T-Y, Lee YG, Kim G, Shin H-W, Il Seok S, Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689. https://doi.org/10.1038/s41560-018-0200-6

    Article  CAS  Google Scholar 

  11. Schloemer TH, Christians JA, Luther JM, Sellinger A (2019) Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem Sci 10:1904–1935. https://doi.org/10.1039/C8SC05284K

    Article  CAS  Google Scholar 

  12. Christians JA, Miranda Herrera PA, Kamat PV (2015) Transformation of the excited state and photovoltaic efficiency of CH 3 NH 3 PbI 3 Perovskite upon controlled exposure to humidified air. J Am Chem Soc 137:1530–1538. https://doi.org/10.1021/ja511132a

    Article  CAS  Google Scholar 

  13. Yang J, Kelly TL (2017) Decomposition and cell failure mechanisms in lead halide Perovskite solar cells. Inorg Chem 56:92–101. https://doi.org/10.1021/acs.inorgchem.6b01307

    Article  CAS  Google Scholar 

  14. Li Z, Xiao C, Yang Y, Harvey SP, Kim DH, Christians JA, Yang M, Schulz P, Nanayakkara SU, Jiang C-S, Luther JM, Berry JJ, Beard MC, Al-Jassim MM, Zhu K (2017) Extrinsic ion migration in perovskite solar cells. Energy Environ Sci 10:1234–1242. https://doi.org/10.1039/C7EE00358G

    Article  CAS  Google Scholar 

  15. Zhang J, Daniel Q, Zhang T, Wen X, Xu B, Sun L, Bach U, Cheng Y-B (2018) Chemical dopant engineering in hole transport layers for efficient Perovskite solar cells: insight into the interfacial recombination. ACS Nano 12:10452–10462. https://doi.org/10.1021/acsnano.8b06062

    Article  CAS  Google Scholar 

  16. Wang F, Shimazaki A, Yang F, Kanahashi K, Matsuki K, Miyauchi Y, Takenobu T, Wakamiya A, Murata Y, Matsuda K (2017) Highly efficient and stable Perovskite solar cells by interfacial engineering using solution-processed polymer layer. J Phys Chem C 121:1562–1568. https://doi.org/10.1021/acs.jpcc.6b12137

    Article  CAS  Google Scholar 

  17. Agresti A, Pescetelli S, Taheri B, Del Rio Castillo AE, Cinà L, Bonaccorso F, Di Carlo A (2016) Graphene-Perovskite solar cells exceed 18 % efficiency: a stability study. ChemSusChem 9:2609–2619. https://doi.org/10.1002/cssc.201600942

    Article  CAS  Google Scholar 

  18. Huang C, Fu W, Li C-Z, Zhang Z, Qiu W, Shi M, Heremans P, Jen AK-Y, Chen H (2016) Dopant-free hole-transporting material with a C 3 h symmetrical truxene core for highly efficient Perovskite solar cells. J Am Chem Soc 138:2528–2531. https://doi.org/10.1021/jacs.6b00039

    Article  CAS  Google Scholar 

  19. Rakstys K, Paek S, Gao P, Gratia P, Marszalek T, Grancini G, Cho KT, Genevicius K, Jankauskas V, Pisula W, Nazeeruddin MK (2017) Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. J Mater Chem A 5:7811–7815. https://doi.org/10.1039/C7TA01718A

    Article  CAS  Google Scholar 

  20. Hua Y, Chen S, Zhang D, Xu P, Sun A, Ou Y, Wu T, Sun H, Cui B, Zhu X (2019) Bis[di(4-methoxyphenyl)amino]carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance. J Mater Chem A 7:10200–10205. https://doi.org/10.1039/C9TA01731C

    Article  CAS  Google Scholar 

  21. Cheng M, Xu B, Chen C, Yang X, Zhang F, Tan Q, Hua Y, Kloo L, Sun L (2015) Phenoxazine-based small molecule material for efficient Perovskite solar cells and bulk heterojunction organic solar cells. Adv Energy Mater 5:1401720. https://doi.org/10.1002/aenm.201401720

    Article  CAS  Google Scholar 

  22. Liu Y, Chen Q, Duan HS, Zhou H, Yang Y, Chen H, Luo S, Song TB, Dou L, Hong Z, Yang Y (2015) A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J Mater Chem A 3:11940–11947. https://doi.org/10.1039/C5TA02502H

    Article  CAS  Google Scholar 

  23. Li Z, Zhu Z, Chueh C-C, Jo SB, Luo J, Jang S-H, Jen AK-Y (2016) Rational design of dipolar chromophore as an efficient dopant-free hole-transporting material for Perovskite solar cells. J Am Chem Soc 138:11833–11839. https://doi.org/10.1021/jacs.6b06291

    Article  CAS  Google Scholar 

  24. Gu P-Y, Wang N, Wu A, Wang Z, Tian M, Fu Z, Sun XW, Zhang Q (2016) An Azaacene derivative as promising electron-transport layer for inverted perovskite solar cells Chem. An Asian J 11:2135–2138. https://doi.org/10.1002/asia.201600856

    Article  CAS  Google Scholar 

  25. Shaikh DB, Ali Said A, Wang Z, Srinivasa Rao P, Bhosale RS, Mak AM, Zhao K, Zhou Y, Liu W, Gao W, Xie J, Bhosale SV, Bhosale SV, Zhang Q (2020) Influences of structural modification of naphthalenediimides with benzothiazole on organic field-effect transistor and non-fullerene perovskite solar cell characteristics. ACS Appl Mater Interfaces 11:44487–44500. https://doi.org/10.1021/acsami.9b13894

    Article  CAS  Google Scholar 

  26. Said AA, Xie J, Wang Y, Wang Z, Zhou Y, Zhao K, Gao W, Michinobu T, Zhang Q (2019) Efficient inverted perovskite solar cells by employing N-type (D–A 1–D–A 2) polymers as electron transporting layer. Small 15:1803339. https://doi.org/10.1002/smll.201803339

    Article  CAS  Google Scholar 

  27. Said AA, Xie J, Zhang Q (2019) Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15:1900854. https://doi.org/10.1002/smll.201900854

    Article  CAS  Google Scholar 

  28. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang T-Y, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567:511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  CAS  Google Scholar 

  29. Cao Y, Li Y, Morrissey T, Lam B, Patrick BO, Dvorak DJ, Xia Z, Kelly TL, Berlinguette CP (2019) Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy Environ Sci 12:3502–3507. https://doi.org/10.1039/C9EE02983D

    Article  CAS  Google Scholar 

  30. Marenich AV, Cramer CJ, Truhlar DG, Guido CA, Mennucci B, Scalmani G, Frisch MJ (2011) Practical computation of electronic excitation in solution: vertical excitation model. Chem Sci 2:2143–2161. https://doi.org/10.1039/c1sc00313e

    Article  CAS  Google Scholar 

  31. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410. https://doi.org/10.1039/B715018K

    Article  CAS  Google Scholar 

  32. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  33. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615. https://doi.org/10.1039/b810189b

    Article  CAS  Google Scholar 

  34. Rooman M, Wintjens R (2014) Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06–2X hybrid density functional theory calculations. J Biomol Struct Dyn 32:532–545. https://doi.org/10.1080/07391102.2013.783508

    Article  CAS  Google Scholar 

  35. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675. https://doi.org/10.1063/1.475428

    Article  CAS  Google Scholar 

  36. Hussain R, Khan MU, Mehboob MY, Khalid M, Iqbal J, Ayub K, Adnan M, Ahmed M, Atiq K, Mahmood K (2020) Enhancement in photovoltaic properties of N N -diethylaniline based donor materials by bridging core modifications for efficient solar cells. ChemistrySelect. 5:5022–5034. https://doi.org/10.1002/slct.202000096

    Article  CAS  Google Scholar 

  37. Afzal Z, Hussain R, Khan MU, Khalid M, Iqbal J, Alvi MU, Adnan M, Ahmed M, Mehboob MY, Hussain M, Tariq CJ (2020) Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Model 26:137. https://doi.org/10.1007/s00894-020-04386-5

    Article  CAS  Google Scholar 

  38. Khan MU, Iqbal J, Khalid M, Hussain R, Braga AAC, Hussain M, Muhammad S (2019) Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 9:26402–26418. https://doi.org/10.1039/C9RA03856F

    Article  CAS  Google Scholar 

  39. Janjua MRSA, Khan MU, Khalid M, Ullah N, Kalgaonkar R, Alnoaimi K, Baqader N, Jamil S (2020) Theoretical and conceptual framework to design efficient dye-sensitized solar cells (dsscs): molecular engineering by DFT method. J Clust Sci. https://doi.org/10.1007/s10876-020-01783-x

    Article  Google Scholar 

  40. Mehboob MY, Hussain R, Khan MU, Adnan M, Umar A, Alvi MU, Ahmed M, Khalid M, Iqbal J, Akhtar MN, Zafar F, Shahi MN (2020) Designing N-phenylaniline-triazol configured donor materials with promising optoelectronic properties for high-efficiency solar cells. Comput Theor Chem 1186:112908. https://doi.org/10.1016/j.comptc.2020.112908

    Article  CAS  Google Scholar 

  41. Siddique MBA, Hussain R, Ali Siddique S, Mehboob MY, Irshad Z, Iqbal J, Adnan M (2020) Designing triphenylamine-configured donor materials with promising photovoltaic properties for highly efficient organic solar cells. ChemistrySelect 5:7358–7369. https://doi.org/10.1002/slct.202001989

    Article  CAS  Google Scholar 

  42. Khan MU, Hussain R, Yasir Mehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi AA, Jamil S, Janjua MRSA (2020) In silico modeling of new “Y-Series”-based near-infrared sensitive non-fullerene acceptors for efficient organic solar cells. ACS Omega 5(2020):24125–24137. https://doi.org/10.1021/acsomega.0c03796

    Article  CAS  Google Scholar 

  43. Khan MU, Mehboob MY, Hussain R, Afzal Z, Khalid M, Adnan M (2020) Designing spirobifullerene core based three-dimensional cross shape acceptor materials with promising photovoltaic properties for high-efficiency organic solar cells. Int J Quantum Chem. https://doi.org/10.1002/qua.26377

    Article  Google Scholar 

  44. Hussain R, Hassan F, Khan MU, Mehboob MY, Fatima R, Khalid M, Mahmood K, Tariq CJ, Akhtar MN (2020) Molecular engineering of A-D–C–D–A configured small molecular acceptors (SMAs) with promising photovoltaic properties for high-efficiency fullerene-free organic solar cells. Opt Quantum Electron 52:364. https://doi.org/10.1007/s11082-020-02482-7

    Article  CAS  Google Scholar 

  45. Khan MU, Hussain R, Mehboob MY, Khalid M, Ehsan MA, Rehman A, Janjua MRSA (2021) First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells, spectrochim. Acta Part A Mol Biomol Spectrosc 245:118938. https://doi.org/10.1016/j.saa.2020.118938

    Article  CAS  Google Scholar 

  46. Khan MU, Mehboob MY, Hussain R, Fatima R, Tahir MS, Khalid M, Braga AAC (2020) Molecular designing of high-performance 3D star-shaped electron acceptors containing a truxene core for nonfullerene organic solar cells. J Phys Org Chem. https://doi.org/10.1002/poc.4119

    Article  Google Scholar 

  47. Mehboob MY, Khan MU, Hussain R, Hussain R, Ayub K, Sattar A, Ahmad MK, Irshad Z, Saira MA (2021) Designing of benzodithiophene core-based small molecular acceptors for efficient non-fullerene organic solar cells, Spectrochim. Acta Part A Mol Biomol Spectrosc 244:118873. https://doi.org/10.1016/j.saa.2020.118873

    Article  CAS  Google Scholar 

  48. Mehboob MY, Khan MU, Hussain R, Fatima R, Irshad Z, Adnan M (2020) Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells. J Theor Comput Chem. 19:2050034. https://doi.org/10.1142/S0219633620500340

    Article  CAS  Google Scholar 

  49. Hussain S, Chatha SAS, Hussain AI, Hussain R, Mehboob MY, Muhammad S, Ahmad Z, Ayub K (2020) Zinc-doped boron phosphide nanocluster as efficient sensor for SO 2. J Chem 2020:2629596. https://doi.org/10.1155/2020/2629596

    Article  CAS  Google Scholar 

  50. Hussain S, Hussain R, Mehboob MY, Chatha SAS, Hussain AI, Umar A, Khan MU, Ahmed M, Adnan M, Ayub K (2020) Adsorption of phosgene gas on pristine and copper-decorated B 12 N 12 nanocages: a comparative DFT study. ACS Omega 5:7641–7650. https://doi.org/10.1021/acsomega.0c00507

    Article  CAS  Google Scholar 

  51. Hussain R, Saeed M, Mehboob MY, Khan SU, Usman Khan M, Adnan M, Ahmed M, Iqbal J, Ayub K (2020) Density functional theory study of palladium cluster adsorption on a graphene support. RSC Adv 10:20595–20607. https://doi.org/10.1039/D0RA01059F

    Article  CAS  Google Scholar 

  52. Adnan M, Iqbal J, BiBi S, Hussain R, Akhtar MN, Rashid MA, Eliasson B, Ayub K (2020) Fine tuning the optoelectronic properties of triphenylamine based donor molecules for organic solar cells. Zeitschrift Für Phys Chemie. https://doi.org/10.1515/zpch-2016-0790

    Article  Google Scholar 

  53. Ahmed M, Imran M, Muddassar M, Hussain R, Khan MU, Ahmad S, Mehboob MY, Ashfaq S (2020) Benzenesulfonohydrazides inhibiting urease: design, synthesis, their in vitro and in silico studies. J Mol Struct 1220:128740. https://doi.org/10.1016/j.molstruc.2020.128740

    Article  CAS  Google Scholar 

  54. Hussain S, Shahid Chatha SA, Hussain AI, Hussain R, Mehboob MY, Gulzar T, Mansha A, Shahzad N, Ayub K (2020) Designing novel Zn-decorated inorganic B 12 P 12 nanoclusters with promising electronic properties: a step forward toward efficient CO 2 sensing materials. ACS Omega 5:15547–15556. https://doi.org/10.1021/acsomega.0c01686

    Article  CAS  Google Scholar 

  55. Hussain R, Imran M, Mehboob MY, Ali M, Hussain R, Khan MU, Ayub K, Yawer MA, Saleem M, Irfan A (2020) Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages. J Theor Comput Chem 19:2050031. https://doi.org/10.1142/S0219633620500315

    Article  CAS  Google Scholar 

  56. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C 122:4009–4018. https://doi.org/10.1021/acs.jpcc.7b12293

    Article  CAS  Google Scholar 

  57. Janjua MRSA, Amin M, Ali M, Bashir B, Khan MU, Iqbal MA, Guan W, Yan L, Su Z-M (2012) A DFT study on the two-dimensional second-order nonlinear optical (NLO) response of terpyridine-substituted hexamolybdates: physical insight on 2D inorganic-organic hybrid functional materials. Eur J Inorg Chem 2012:705–711. https://doi.org/10.1002/ejic.201101092

    Article  CAS  Google Scholar 

  58. Khan MU, Ibrahim M, Khalid M, Qureshi MS, Gulzar T, Zia KM, Al-Saadi AA, Janjua MRSA (2019) First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem Phys Lett 715:222–230. https://doi.org/10.1016/j.cplett.2018.11.051

    Article  CAS  Google Scholar 

  59. Khan MU, Ibrahim M, Khalid M, Braga AAC, Ahmed S, Sultan A (2019) Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J Clust Sci 30:415–430. https://doi.org/10.1007/s10876-018-01489-1

    Article  CAS  Google Scholar 

  60. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019) Quantum chemical designing of indolo[3,2,1-jk]carbazole-based dyes for highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66. https://doi.org/10.1016/j.cplett.2019.01.043

    Article  CAS  Google Scholar 

  61. Siddique SA, Siddique MBA, Hussain R, Liu X, Mehboob MY, Irshad Z, Adnan M (2020) Efficient tuning of triphenylamine-based donor materials for high-efficiency organic solar cells. Comput Theor Chem 1191:113045. https://doi.org/10.1016/j.comptc.2020.113045

    Article  CAS  Google Scholar 

  62. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—Towards 10 % energy-conversion efficiency. Adv Mater 18:789–794. https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  63. Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129:14257–14270. https://doi.org/10.1021/ja073455y

    Article  CAS  Google Scholar 

  64. Dkhissi A (2011) Excitons in organic semiconductors. Synth Met 161:1441–1443. https://doi.org/10.1016/j.synthmet.2011.04.003

    Article  CAS  Google Scholar 

  65. Kim B-G, Zhen C-G, Jeong EJ, Kieffer J, Kim J (2012) Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: exciton binding energy and electron acceptors. Adv Funct Mater 22:1606–1612. https://doi.org/10.1002/adfm.201101961

    Article  CAS  Google Scholar 

  66. Arkhipov VI, Heremans P, Bässler H (2003) Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl Phys Lett 82:4605–4607. https://doi.org/10.1063/1.1586456

    Article  CAS  Google Scholar 

  67. Marchiori CFN, Koehler M (2010) Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: a molecular study using density functional theory calculations. Synth Met 160:643–650. https://doi.org/10.1016/j.synthmet.2009.12.026

    Article  CAS  Google Scholar 

  68. Koehler M, Santos MC, da Luz MGE (2006) Positional disorder enhancement of exciton dissociation at donor/acceptor interface. J Appl Phys 99:053702. https://doi.org/10.1063/1.2174118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Chosun University. We also thankful to Prof. Jae Kwan Lee for the useful discussion about the project. And we are also thankful to “Dry Chemistry Lab” of University of Okara for useful facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riaz Hussain, Muhammad Usman Khan or Muhammad Adnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, R., Mehboob, M.Y., Khan, M.U. et al. Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells. J Mater Sci 56, 5113–5131 (2021). https://doi.org/10.1007/s10853-020-05567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05567-6

Navigation