Skip to main content
Log in

Investigation of Organic LED Materials Using a Transparent Cathode for Improved Efficiency

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper proposes a flexible transparent organic light-emitting diode (OLED) which is notable due to its high electron injection and transmittance. Though graphene-based OLEDs are promising candidates for flexible displays due to the enormous merits offered, a significant decrease in its device efficiency was reported in comparison to the other conventional indium tin oxide-based OLEDs. The device illustrated enhances the performance of the graphene-based flexible OLEDs through balanced charge recombination. A theoretical analysis has been done through performing optical simulations. The structure of the graphene-based OLED is optimized through the employment of efficient cathode and electron injection layer materials to boost the electron injection into the device. With the aid of simulations, it was found that optimum results are obtained with aluminum zinc oxide (Al:ZnO) as the cathode and Al/LiF/Alq3 as the electron injection layer. The proposed structure exhibits high transmittance of 87.14% with a current efficiency of 61.17 cd/A, and external quantum efficiency (EQE) of 21.2% at 1000 cd/m2 for the bottom side. An evident improvement in the device performance with 32.9% increase in the current efficiency, and 45.2% increase in the EQE was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N. Patel and M.M. Prajapati, Int. J. Sci. Res. Pubs. 4, 1 (2014).

    Google Scholar 

  2. G. Dhyani and N. Bisht, Int. Res. J. Eng. Tech. 3, 55 (2016).

    Google Scholar 

  3. F. Batool, Int. J. Adv. Res. Comput. Commun. Eng. 5, 152 (2016).

    Google Scholar 

  4. A.M. Ijeaku, M.H. Chidubem, E.K. Chukwunonyerem, and N.U. Obioma, Am. J. Eng. Res. 4, 153 (2015).

    Google Scholar 

  5. A.M. Bagher, Am. J. Opt. Photon. 2, 32 (2014).

    Article  Google Scholar 

  6. J.K. Wassei and R.B. Kaner, Mater. Today 13, 52 (2010).

    Article  Google Scholar 

  7. M. Bruna and S. Borini, Appl. Phys. Lett. 94, 1 (2009).

    Article  Google Scholar 

  8. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  Google Scholar 

  9. S.Y. Kim and J. Kim, J. Org. Electron. 13, 1081 (2012).

    Article  Google Scholar 

  10. T.-H. Han, S.-H. Jeong, Y. Lee, H.-K. Seo, S.-J. Kwon, M.-H. Park, and T.-W. Lee, J. Inf. Disp. 16, 71 (2015).

    Article  Google Scholar 

  11. N. Li, S. Oida, G.S. Tulevski, S.-J. Han, J.B. Hannon, D.K. Sadana, and T.-C. Chen, Nat. Commun. 4, 2294 (2013).

    Article  Google Scholar 

  12. J. Moon, J.-W. Shin, H. Cho, J.-H. Han, N.S. Cho, J.T. Lim, S.K. Park, H.K. Choi, S.-Y. Choi, J.-H. Kim, M.-J. Maeng, J. Seo, Y. Park, and J.-I. Lee, Diamond Relat. Mater. 57, 68 (2015).

    Article  Google Scholar 

  13. J.-Y. Hong and J. Jang, J. Mater. Chem. 22, 8179 (2012).

    Article  Google Scholar 

  14. H. Cho, J.-W. Shin, N.S. Cho, J. Moon, J.-H. Han, Y.-D. Kwon, S. Cho, and J.-I. Lee, IEEE J. Sel. Top. Quantum Electron. 22, 2000306 (2016).

    Article  Google Scholar 

  15. H. Cho, C. Yun, and S. Yoo, Opt. Express 18, 3404 (2010).

    Article  Google Scholar 

  16. E. Oh, S. Park, J. Jeong, S.J. Kang, H. Lee, and Y. Yi, Chem. Phys. Lett. 668, 64 (2017).

    Article  Google Scholar 

  17. R.N. Chauhan, N. Tiwari, R.S. Anand, and J. Kumar, J RSC Adv. 6, 86770 (2016).

    Article  Google Scholar 

  18. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 1 (2005).

    Article  Google Scholar 

  19. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  Google Scholar 

  20. S. Taverne, B. Caron, S. Gétin, O. Lartigue, C. Lopez, S. Meunier-Della-Gatta, V. Gorge, M. Reymermier, B. Racine, T. Maindron, and E. Quesnel, J. Appl. Phys. 123, 1 (2018).

    Article  Google Scholar 

  21. K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak, and J.L. Lee, J. Phys. Chem. C 115, 3453 (2011).

    Article  Google Scholar 

  22. K. Bouzid, T. Maindron, and H. Kanaan, J. Soc. Inf. Disp. 24, 563 (2016).

    Article  Google Scholar 

  23. G.W. Kim, R. Lampande, J. Boizot, G.H. Kim, D.C. Choe, and J.H. Kwon, Nanoscale 6, 3810 (2014).

    Article  Google Scholar 

  24. H. Lee, M.J. Maeng, J.A. Hong, R. Najnin, J. Moon, H. Cho, J. Lee, B. Gon, Y. Park, and N.S. Cho, J. Mater. Chem. C 5, 9911 (2017).

    Article  Google Scholar 

  25. S.H. Rhee, K.B. Nam, C.S. Kim, M. Song, W. Cho, S.H. Jin, and S.Y. Ryu, ECS Solid State Lett. 3, R19 (2014).

    Article  Google Scholar 

  26. B.Y. Kim, S.J. Lee, J.R. Koo, S.E. Lee, K.H. Lee, J.A. Yoon, W.Y. Kim, S.S. Yoon, and Y.K. Kim, J. Nanosci. Nanotechnol. 13, 7998 (2013).

    Article  Google Scholar 

  27. B. Liu, M. Xu, L. Wang, H. Tao, Y. Su, D. Gao, J. Zou, L. Lan, and J. Peng, ECS J. Solid State Sci. Technol. 2, R258 (2013).

    Article  Google Scholar 

  28. G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, and K. Leo, J. Appl. Phys. 95, 5773 (2004).

    Article  Google Scholar 

  29. H. Wang, Q. Liao, H. Fu, Y. Zeng, Z. Jiang, J. Ma, and J. Yao, J. Mater. Chem. 19, 89 (2009).

    Article  Google Scholar 

  30. J.-H. Kim, J. Seo, D.-G. Kwon, J.-A. Hong, J. Hwang, H.K. Choi, J. Moon, J.-I. Lee, D.Y. Jung, S.-Y. Choi, and Y. Park, Carbon 79, 623 (2014).

    Article  Google Scholar 

  31. C.W. Joo, J. Moon, J. Hwang, J.-H. Han, J.-W. Shin, D.-H. Cho, J.W. Huh, H.Y. Chu, and J.-I. Lee, Jpn. J. Appl. Phys. 51, 1 (2012).

    Article  Google Scholar 

  32. X.-B. Shi, Y. Hu, B. Wang, L. Zhang, Z.-K. Wang, and L.-S. Liao, Adv. Mater. 27, 6696 (2015).

    Article  Google Scholar 

  33. L. Zhang, X.-L. Li, D. Luo, P. Xiao, W. Xiao, Y. Song, Q. Ang, and B. Liu, Materials 10, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

We express sincere thanks to our Director Dr. S. S. Pattnaik who availed us with the necessary resources which were much needed to complete the work. We would also like to thank our Electronics and Communication Department for providing us valuable support and inputs which helped us in improving our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Mehra, R. Investigation of Organic LED Materials Using a Transparent Cathode for Improved Efficiency. J. Electron. Mater. 48, 4409–4417 (2019). https://doi.org/10.1007/s11664-019-07221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07221-7

Keywords

Navigation